

Detailed Site Investigation

16 Lowana Street, Villawood NSW 2163

Prepared For:	Land and Housing Corporation – Department of Planning and Environment
Reference:	23-1551
Date:	19 December 2023

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 1 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117

T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

Controlled Document Distribution & Revision Register

Distribution List:		
Сору No	Custodian	Location
Original	Con Kariotoglou	ECON Environmental Pty Ltd (Filed)
Soft Copy (PDF, emailed)	Land and Housing Corporation Department of Planning and Environment	Darren.D'Mello@facs.nsw.gov.au

Note: This register identifies the current custodians of controlled copies of this subject report document.

Document History:		
Document No	Revision No.	Issue Date
23-1551	А	19.12.2023

Report Author	Technical Reviewer:
C/hat	Aller
Con Kariotoglou	Cheyne Hudson
Managing Director	BEnvSc (Hons) (CenvP)
BSc, Cert IV WHS, AFMIML, MEIANZ, MALGA	
SafeWork NSW Approved Asbestos Assessor, License No. LAA001006	VADILIT3 AR

Copyright © 2023 ECON Environmental Pty Ltd.

This report, and any attached documents to this report, is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full, only with the prior written permission of ECON Environmental Pty Ltd.

This report is to be read in its entirety and should not be review in individual section to provide any level of information independently. Each section of the report relates to the rest of the document and as such is to be read in conjunction, including its appendices and attachments.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 2 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117

T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

EXECUTIVE SUMMARY

ECON Environmental Pty Ltd was engaged by Mr. Darren D'Mello of the Land and Housing Corporation | Department of Planning and Environment to conduct a Detailed Site Investigation within the subject site located at 16 Lowana Street, Villawood NSW 2163 ('the site'), in accordance with the conclusions and recommendations identified with the ECON Environmental Preliminary Site Investigation, reference 23-1496, dated 29 June 2023.

The objective of this investigation is to assess the subject sites for soil contamination with the acquisition of soil samples to evaluate its suitability for its intended residential land use, as part of the Development Application for a proposed residential development. Therefore, the soil investigation results within the proposed development site will be assessed against the following **NEPM HIL 'A'** criteria.

In accordance with the NSW EPA "Sampling Design Guidelines" (2022) for this sized investigative site (approx. 973m²), a total of eight (8) soil samples plus two (2) QA/QC samples are required to be collected to provide general site coverage.

Based on the data and evidence collected during this detailed site investigation, including the review of previous environmental investigations undertaken with the subject site, the findings of this Detailed Site Investigation are as follows:

- On Monday 11 December 2023 a site inspection was conducted by ECON Environmental's representative Con Kariotoglou. At the time of inspection, the following observations were noted:
 - No potential visible environmental areas of concern were identified within the subject site.
- All eight (8) soil samples, plus two (2) QA/QC sample collected (BH1 to BH8) within the subject site on Monday 11 December 2023, were reported by the laboratory to have concentrations **BELOW** the adopted site assessment criteria for HIL A, land use as per the NEPM, 2013.
- Human and ecological exposure to the potential contaminants identified is currently considered as **LOW**, as no soil contamination was identified within the fill material of the subject site during our investigation.
- Based on the results of this investigation it is considered that the risks to human health and the environment associated with potential migration of contamination from the subject site to adjacent neighbouring properties is considered as LOW within the context of the proposed use of the site for residential purposes, as no soil contamination was identified during this investigation.

Based on the findings of this Detailed Site Investigation by ECON Environmental, it is our opinion that the subject site located at Lot 634 in DP36612, identified as 16 Lowana Street Villawood NSW 2163, is **SUITABLE** for the proposed residential development and land use.

TABLE OF CONTENTS

EXECUTIVE SUMMARY		
TABLE	OF CONTENTS	4
LIST OF	FIGURES – APPENDIX A	7
1. IN	TRODUCTION	8
1.1	Background	8
1.2	Proposed Development or Intended Land Use	9
1.3	Objectives	9
1.4	Scope of Works	
1.5	Legislative Requirements	
2. SI	TE IDENTIFICATION	
2.1	Site Identity	
2.2	Surrounding Land Use	
2.3	Topography	
2.4	Geology	
2.5	Surrounding Dominant Soil Material	
2.6	Surface and Ground Water Hydrology	
3. CC	DNCEPTUAL SITE MODEL (CSM)	
3.1	Potential Areas of Concern	
3.2	Human Receptors and Sensitive Environments	15
4. DA	ATA QUALITY OBJECTIVES	
4.1	STEP 1 - Define the Problem	
4.2	STEP 2 - Identify the Decision	
4.3	STEP 3 - Identify Inputs to the Decision	
4.4	STEP 4 - Define the Study Boundaries	
4.5	STEP 5 - Develop a Decision Rule	
4.6	STEP 6 - Specify Limits of Decision Errors	
4.7	STEP 7 - Optimize Design for Obtaining Data	
5. DA	ATA QUALITY INDICATORS	20
5.1	General	20
5.2	Completeness	20
5.3	Comparability	21

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page **4** of **55**

	5.4	Representativeness	21
	5.5	Representativeness	. 22
	5.6	Accuracy	. 22
6.	SITE	ASSESSMENT CRITERIA	23
	6.1	General	. 23
	6.2	Soils Investigation and Screening Levels	23
	6.2.1	Health Investigation Levels (HILs)	23
	6.2.2	Health Screening Levels (HSLs)	23
	6.2.3	Interim Soil Vapour Health Investigation Levels (Interim HILs)	24
	6.2.4	Ecological Investigation Levels (EILs)	24
	6.2.5	Ecological Screening Levels (ESLs)	25
	6.2.6	Petroleum Hydrocarbon Management Limits	25
	6.2.7	Asbestos in Soils	25
	6.3	Export of Waste	25
7.	SOIL	SAMPLING AND ANALYSIS PLAN	26
	7.1	General Methodology	26
	7.2	Soil Sampling Density and Sampling Location Rationale	26
	7.3	Soil Sampling Depth	27
	7.4	Soil Sampling Methodology	27
	7.5	Soil Laboratory Analysis	. 28
8.	QUA	LITY ASSURANCE / QUALIY CONTROL	. 29
	8.1	Site Procedures	. 29
	8.2	Field QA/QC	. 29
	8.2.1	General	. 29
	8.2.2	Field Duplicates	. 29
	8.2.3	Sample Handling, Storage and Transport	30
	8.2.4	Decontamination Procedures	30
	8.3	Laboratory QA/QC	30
	8.3.1	Laboratories Used	30
	8.3.2	Holding Times	31
	8.3.3	Test Methods and Practical Quantitation Limits	31
	8.4	QA/QC Data Evaluation	31
9.	FIEL	D OBSERVATIONS	33
	9.1	Site Inspection	33
		REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pt Page 5 C	

	9.2	Surface and Subsurface Conditions3	3
1(). L#	ABORATORY RESULTS	4
	10.1	General3	4
	10.2	Soil Results	4
	10.2.1	Heavy Metals3	4
	10.2.1	.1 Health Investigation Levels (HILs)	4
	10.2.1	.2 Ecological Investigation Levels (EILs)	4
	10.2.2	TRH, BTEX, Naphthalene &/or Benzo(a)pyrene3	4
	10.2.2	.1 Health Screening Levels (HSLs)	4
	10.2.2	.2 Ecological Screening Levels (ESLs)	4
	10.2.2	.3 Management Limits	5
	10.2.3	PAH, OCP, PCB, Phenols3	5
	10.2.3	.1 Health Investigation Levels (HILs)	5
	10.2.3	.2 Ecological Investigation Levels (EILs)	5
	10.2.3	.3 Ecological Screening Levels (ESLs)	5
	10.2.4	Asbestos	5
11	L. R	EFINED CONCEPTUAL SITE MODEL	6
	11.1	Conceptual Site Model	6
12	2. C	ONCLUSION AND RECOMMENDATIONS	7
	12.1	Site Observations	7
	12.2	Soil Laboratory Results	7
	12.3	Potential Risks to Onsite and Offsite Receptors	7
	12.4	Potential for Migration of Contaminants3	7
	12.5	Recommendations	7
13	3. LI	MITATION STATEMENT	8
AI	PPENDI	X A: SITE PLANS	9
AI	PPENDI	X B: DEVELOPMENT PLANS4	0
AI	PPENDI	X C: SITE PHOTOGRAPHS4	1
AI	PPENDI	X D: FIELDNOTES	2
AI	PPENDI	X E: SITE ASSESSMENT CRITERIA5	3
AI	PPENDI	X F: SUMMARY OF RESULTS5	4
AI	PPENDI	X G: LABORATORY CERTIFICATES5	5

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 6 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

LIST OF FIGURES – APPENDIX A

- Figure 1 Site Locality
- Figure 2 Site Aerials
- Figure 3 Zoning Map
- Figure 4 Topography Map
- Figure 5 Soil Sampling Borehole Locations

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 7 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

1. INTRODUCTION

1.1 Background

ECON Environmental Pty Ltd was engaged by Mr. Darren D'Mello of the Land and Housing Corporation | Department of Planning and Environment to conduct a Detailed Site Investigation within the subject site located at 16 Lowana Street, Villawood NSW 2163 ('the site'), in accordance with the conclusions and recommendations identified with the ECON Environmental Preliminary Site Investigation, reference 23-1496, dated 29 June 2023, namely:

Based on the findings of this preliminary site investigation, it is our opinion that the site can be made suitable for the proposed residential development. However, it is recommended that the following matters be addressed as part of the process:

- Due to the backfilling and/or terra forming of the subject site between 1951-1955 in preparation of the residential development within the surrounding areas, and due to the historical neighbouring business activities to the north (former hydraulic equipment manufacturer), and northwest (former Defence Site (Landfill), which may have historically impacted the subject site, it is our opinion that the fill material beneath the subject site may contain hazardous materials. Therefore, a **Detailed Site Investigation (DSI)** must be prepared by a suitably qualified and experienced environmental consultant to determine the lateral and vertical extent of the potential contaminants within the designated areas of environmental concerns within the subject site.
- As part of the Detailed Site Investigation, the **Sampling and Analysis Quality Plan (SAQP)** should ensure samples are collected from a minimum of eight (8) locations within the subject site.
- If contaminants are identified within the subject site during the preparation of the Detailed Site Investigation, an appropriate remedial / management strategy is to be developed, culminating in preparation of a **Remedial Action Plan (RAP)** in accordance with EPA guidelines. The RAP must be prepared by a suitable qualified and experienced environmental consultant detailing the remediation and validation processes to be undertaken to ensure the site is made suitable for its proposed development and intended land use.
- A Hazardous Building Materials Assessment of the building structures within the subject site is required to be undertaken by a suitably licensed and experienced building inspector / hygienist, or equivalent, prior to its demolition or renovations to determine if any hazardous building materials are present within the building structures. A Hazardous Registry is required to be prepared accompanying the Assessment report. The subsequent demolition works must adhere to the requirements of the HAZMAT report and those of SafeWork NSW.
- Any waste material from the site, including soils, be pre-classified an accordance with the NSW EPA Waste Classification Guidelines: Part 1 Classifying Waste (2014) by a suitably qualified and experienced person prior to excavation or disposal from the site. If encountered, potentially hazardous materials must be handled by suitably licenced contractors and materials disposed of at an NSW EPA licenced facility appropriate to its **Waste Classification**.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

CONTAMINATION | REMEDIATION | HAZMAT | ASBESTOS

• Should any unidentified or potentially contaminated material be excavated or exposed whilst on site it is recommended that the advice of a trained and experienced contaminated lands consultant be sought. The site foreman should be advised immediately for appropriate action.

The objective of this detailed site investigation is to assess the subject sites for soil contamination with the acquisition of soil samples to evaluate its suitability for its intended residential land use, as part of the Development Application for a proposed residential development.

The site investigation within the subject site was undertaken on Monday 11 December 2023 by ECON Environmental's representative Con Kariotoglou.

Details of the findings are presented within the body of this report, as well as an assessment of significance with regards to the findings of the investigation.

This report was completed in accordance with the *Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, May 2020.*

1.2 Proposed Development or Intended Land Use

At the time of writing this report ECON Environmental were not provided with architectural drawings for the project except for a site survey plan, however we understand the existing house shall be demolished and the development will typically comprise construction of single or double storey residential buildings. The development will not include basement levels, in accordance with the proposed plans in Appendix B – Proposed Development Plans.

1.3 Objectives

The objectives of this Detailed Site Investigation are to:

- Identify potential areas where contamination may have occurred from current and historical activities within the subject site,
- Identify potential contaminants associated with potentially contaminating activities,
- Provide soil sampling and analysis to determine the lateral extent and vertical depth of contamination onsite, if identified,
- Assess the suitability of the investigative site for redevelopment based on its current condition and the findings of this investigation, and
- Assess the need for further remediation works and investigations.

Page **9** of **55**

1.4 Scope of Works

The scope of works included the following:

- A site inspection of the subject site and review the physical site settings and site conditions based on the site inspection,
- Research and review the information available, including previous environmental investigations,
- Development of a preliminary Conceptual Site Model (CSM) to demonstrate the interactions between potential sources of contamination, exposure pathways and human/ecological receptors identified,
- A targeted soil boring/sampling investigative study formulating and conducting a sampling plan and borehole investigation,
- Laboratory analysis and results from sample analysis findings and comparison to regulatory guidelines,
- Field and laboratory Quality Assurance/Quality Control (QA/QC),
- Reporting in accordance with the associated legislations and guidelines, and
- Recommendations for additional investigations should any data gaps be identified or possible strategies for the management of the site, where relevant.

1.5 Legislative Requirements

The legislative framework for the report is based on State Environmental Planning Policy (Resilience and Hazards) 2021, and the following Acts and Regulations:

- Protection of the Environment Operations Act (1997)
- Contaminated Land Management Act (1997)
- Protection of the Environment Operations (General) Regulation 2021

In addition, the following guidelines have been applied where necessary:

- Sampling Design Guidelines (NSW EPA, 1995)
- Guidelines for Consultants Reporting on Contaminated Sites (NSW EPA, 2020).
- National Environmental Protection Measure (NEPC, 2013)
- Waste Classification Guidelines Part 1: Classifying Waste (NSW DECCW, 2014)
- Australian Standard AS 4482.1 Guide to the Sampling and Investigation of Potentially Contaminated Soil. Part 1: Non-volatile and Semi-Volatile Compounds

2. SITE IDENTIFICATION

2.1 Site Identity

The subject site is located at 16 Lowana Street, Villawood NSW 2163. Figures 1 and 2 in Appendix A shows an aerial photograph of the subject site relative to its surrounding land.

Table 1: Site Identification		
Current Site Owners	NSW Land and Housing Corporation	
Street Address	16 Lowana Street, Villawood NSW 2163	
Lot and DP Number	Lot 634 in DP 36612	
Approx. Total Site Area	973m ²	
Zoning	R3 – Medium Density Residential	
Local Government Area	Canterbury Bankstown City Council	

2.2 Surrounding Land Use

The site is located within a low density residential setting and bordered by:

- Low Density Residential properties to the north, east and west,
- Lowana Street then Thurina Park directly to the south
- Villawood East Public School, 80m south west of subject site,
- Commercial / Industrial precinct 185m directly north of the subject site.

2.3 Topography

According to <u>https://www.environment.nsw.gov.au/eSpade2Webapp</u> the topography of the surrounding areas includes gently undulating rises on Wianamatta Shale with local relief 10–30 m and slopes generally >5% but occasionally up to 10%. Crests and ridges are broad (200–600 m) and rounded with convex upper slopes grading into concave lower slopes. Outcrops of shale do not occur naturally on the surface. They may occur, however, where soils have been removed.

The topography of the subject site is generally flat with a slight incline south towards Lowana Street.

2.4 Geology

Wianamatta Group—Ashfield Shale consisting of laminite and dark grey siltstone, Bringelly Shale which consists of shale with occasional calcareous claystone, laminite and infrequent coal, and Minchinbury Sandstone consisting of fine to medium-grained quartz lithic sandstone.

2.5 Surrounding Dominant Soil Material

Friable brownish black loam. This is a friable brownish black loam to clay loam with moderately pedal subangular blocky structure and rough-faced porous ped fabric. This material occurs as topsoil (A horizon). Peds are well defined subangular blocky and range in size from 2–20 mm. Surface condition is friable. Colour is brownish black but can range from dark reddish brown to dark yellowish brown. The pH varies from moderately acid (pH 5.5) to neutral (pH 7.0). Rounded iron indurated fine gravel-sized shale fragments and charcoal fragments are sometimes present. Roots are common.

Hardsetting brown clay loam. This is a brown clay loam to silty clay loam which is hardsetting on exposure or when completely dried out. It has apedal massive to weakly pedal structure and slowly porous earthy fabric. It occurs as an A2 horizon. Peds when present are weakly developed, subangular blocky and are rough faced and porous. They range in size between 20–50 mm. This material is water repellent when extremely dry. Colour is dark brown but can range from dark reddish brown to dark brown. The pH varies from moderately acid (pH 5.0) to slightly acid (pH 6.5). Platy, iron indurated gravel-sized shale fragments are common. Charcoal fragments and roots are rarely present.

Strongly pedal, mottled brown light clay. This is a brown light to medium clay with strongly pedal polyhedral or sub-angular to blocky structure and smooth-faced dense ped fabric. This material usually occurs as subsoil (B horizon). Texture often increases with depth. Peds range in size from 5–20 mm. Colour is brown but may range from reddish brown to brown. Frequent red, yellow or grey mottles occur often becoming more numerous with depth. The pH varies from strongly acid (pH 4.5) to slightly acid (pH 6.5). Fine to coarse gravel-sized shale fragments are common and often occur in stratified bands. Both roots and charcoal fragments are rare.

Light grey plastic mottled clay. This is a plastic light grey silty clay to heavy clay with moderately pedal polyhedral to subangular blocky structure and smooth faced dense ped fabric. This material usually occurs as deep subsoil above shale bedrock (B3 or C horizon). Peds range in size from 2–20 mm. Colour is usually light grey or, less commonly, greyish yellow. Red, yellow or grey mottles are common. The pH varies from strongly acid (pH 4.0) to moderately acid (pH 5.5). Strongly weathered ironstone concretions and rock fragments are common. Gravel-sized shale fragments and roots are occasionally present. Charcoal fragments are rare.

2.6 Surface and Ground Water Hydrology

The site currently consists of approximately 25% impervious hard surface, and 75% permeable vegetated surface. The site was unoccupied with a main residential building structures with a semi attached granny flat at the rear. A small shed was identified within the back yard.

Stormwater infiltration is anticipated to be medium due to the majority of permeable surfaces. It is anticipated that the un-infiltrated stormwater will sheet south towards Lowana Street stormwater system.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 13 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

3. CONCEPTUAL SITE MODEL (CSM)

3.1 Potential Areas of Concern

Based on the historical records and aerial photographs inspected in the preparation of the *ECON Environmental Preliminary Site Investigation, ref: 23-1496, dated 29 June 2023,* the following Table 2 identifies the main Potential Areas of Environmental Concern (PAECs), and their associated potential Contaminants of Concern (COCs) within the subject site using the information gathered through this assessment, previous environmental site assessments and qualitative judgement based on consultant experience.

Table 2: Areas of Environmental Concern			
PAEC	Potentially Contaminating Activity	Contaminants of Concern	Likelihood of Contamination
Underlying soils beneath the whole site.	Fill material – The subject site appears to have been historically filled between 1951-1955 to achieve the existing levels. The fill may have been imported from various sources and could contain hazardous materials.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.	Possible
	Pesticides - Use of pesticides may have been used beneath the buildings and/or around the site, and/or may have migrated onto the site from neighbouring historical residential properties.	Heavy metals and OCPs	Possible
Historical former Defence Site (Landfill), 105m northeast of the subject site.	Migration (leaching) of chemicals / hazardous materials offsite from the former Defence Site to the southwest towards Prospect Creek & Georges River, through the subject site.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.	Possible

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 14 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

Historical former Lucas Industries Australia (Hydraulic Equipment Manufacturers) 146m north of the subject site.	Migration (leaching) of chemicals / oils / petroleum hydrocarbons offsite from the former Manufacturing Site to the subject site.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs) and asbestos.	Possible
Existing Building Structures	Hazardous Building Materials - may be present as a result of historical building and demolition activities. These materials may also be present in the existing buildings / structures on site.	Asbestos, Lead, PCBs	Likely, as the residential house was built prior to circa 1955.

3.2 Human Receptors and Sensitive Environments

On-site Human Receptors & Sensitive Environments:

- Demolition / Excavation / Construction workers during the construction process,
- Future occupants & visitors of the subject site.

Off-site Human Receptors & Sensitive Environments:

- Occupants of the Low Density Residential properties to the north, east and west,
- Public users of the Lowana Street then Thurina Park directly to the south
- Staff and students of Villawood East Public School, 80m south west of subject site,
- Occupants of the Commercial / Industrial precinct 185m directly north of the subject site.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 15 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

4. DATA QUALITY OBJECTIVES

Data quality objectives were established for the site characterisation works, following the decisionmaking procedures outlined in NEPC (2013):

- Step 1 Define the problem,
- Step 2 Identify the decision,
- Step 3 Identify inputs to the decision,
- Step 4 Define the study boundaries,
- Step 5 Develop a decision rule,
- Step 6 Specify limits on decision errors, and
- Step 7 Optimise the design for obtaining data.

4.1 STEP 1 - Define the Problem

To determine the potential risks to human health and the environment exist from the potential contamination of soils associated with underlying soils from the historical use of the site, and adjoining potential impacting historical activities surrounding the subject site.

4.2 STEP 2 - Identify the Decision

Based on the decision-making process for assessing urban redevelopment sites, the following decisions must be made:

- 1. Are there any unacceptable health risks to future onsite receptors?
- 2. Are there any unacceptable ecological risks posed by the site?
- 3. Are there any aesthetic issues at the site?
- 4. Is there any evidence of, or potential for, migration of contaminants from the site?
- 5. Is a site management strategy required?

4.3 STEP 3 - Identify Inputs to the Decision

The following inputs were used to allow the assessment of the decisions:

- 1. Historical information,
- 2. Observations made during site investigations,
- 3. Soil analytical data from samples collected on site,
- 4. Adopted site assessment criteria, and
- 5. Data quality indicators.

4.4 STEP 4 - Define the Study Boundaries

The study site is located within the combined boundaries of Lot 634 in DP36612, 16 Lowana Street, Villawood NSW 2163. It can be identified as a rectangular shaped lot located north of Lowana Street.

The lateral extent of the investigation is within the entire boundaries of the subject site, see Figure 5, Appendix A. While the vertical extent of the investigation included the surface topsoil material, approx. 0.3m BGL at near surface boundaries to natural soils.

4.5 STEP 5 - Develop a Decision Rule

Soil analytical data were assessed against National Environmental Protection Measure (NEPM) criteria as referenced in Section 8. Statistical analysis of the data will be undertaken if necessary. The following statistical criteria shall be adopted:

- 1. The upper 95% confidence limit on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion,
- 2. No single analyte shall exceed 250% of the adopted criterion, and
- 3. The standard deviation of the results must be below 50 % of the criterion.

The acceptable limits for laboratory QA/QC parameters are shown in the table below and are based upon the laboratory reported acceptable limits and those stated within the NEPM 2013 Schedule B3 Guideline & AS 4482.1-2005.

Table 3: Soil QA/QC Parameters			
Type of QC Sample	Control Limit		
FIE	LD		
Rinsate Blanks	Analytes <lor< td=""></lor<>		
Intra-Laboratory Duplicates	RPD's < 30 - 50%		
Inter-Laboratory Duplicates	RPD's < 30 - 50%		
Trip Blanks	Volatiles <lor< td=""></lor<>		
Trip Spike Recovery	>70%		
LABOR	ATORY		
Method Blanks	< Laboratory LOR		
	Recovery targets:		
Matrix Spike	• Metals: 70% to 130%		
	• Organics: 60% to 140%		
Laboratory Duplicate	RPD's <30%		
Laboratory Control Samples	Recovery targets: 70% to 130%		
Surrogate Spike	Recovery targets: 60% to 140%		

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 17 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

The following conditions should be adopted:

- If the control limits are exceeded, then an assessment of the significance of the results should be carried out,
- If major non-conformances from the laboratory or field data are identified, then further sampling and laboratory analysis may be required to provide an adequate sample set for data reliance,
- If the results of the DQI assessment indicate that the data set is reliable, then the data set will be deemed to be acceptable for the purposes of the validation works, and
- If the measured concentrations of soil samples analysed meet their respective validation criteria, then no additional remediation is required.

4.6 STEP 6 - Specify Limits of Decision Errors

The usual null hypothesis for remediation of contamination is that the land has unacceptable risk from residual contamination, and this hypothesis is able to be accepted at a 95% confidence level, giving a 5% risk of a Type I error (site is deemed suitable when it is not).

An assessment of the likelihood of a decision error will be made based on:

- The acceptable limits for inter/intra laboratory duplicate sample comparisons as specified in Step 5 of the DQOs, and
- The acceptable limits for laboratory QA/QC parameters are based upon the laboratory reported acceptable limits and those stated within the NEPM 2013 Schedule B3 Guideline & AS 4482.1-2005.

If the concentration of a particular contaminant of concern exceeds its remediation/validation criteria, then a further assessment is required to address the significance of the result. Statistical analysis (arithmetic mean) based on 95% UCL may be used to assess the significance of the data provided the following conditions are met:

- the 95% ucl of the arithmetic mean must be less than the criterion,
- the standard deviation of the data set is less than 50% of the relevant threshold level, and
- no individual sample result should be greater than 250% of the relevant threshold level.

4.7 STEP 7 - Optimize Design for Obtaining Data

The optimum design for obtaining data in order to achieve the Data Quality Objectives is as follows:

- Review of previous environmental site investigation results,
- Only NATA-accredited environmental testing laboratories will be commissioned to analyse soil and groundwater samples and will implement a quality control plan conforming to the NEPM (Assessment of Site Contamination) Measure Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils and Groundwater.
- Assessment of the Data Quality Indicators to determine if the field procedures and laboratory analytical results are reliable,
- Collection of QA/QC samples at frequencies prescribed in the NEPM Guidelines,
- Field sampling works will be carried out by an experienced and qualified Environmental Scientist in accordance with ECON Environmental protocols, based on National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 Schedules B1, B2, B4, B6 & B9 and other NSW EPA endorsed guidelines.

5. DATA QUALITY INDICATORS

5.1 General

The five Data Quality Indicators (DQIs) comprising completeness; comparability; representativeness; precision and accuracy provide an assessment of the reliability of field procedures and laboratory analytical results in accordance with the Contaminated Land Management - Guidelines for the NSW Site Auditor Scheme (3rd Edition, 2017).

These are addressed in the following sub-sections.

5.2 Completeness

Data Completeness is a measure of the amount of useable data (expressed as %) from a data collection activity. The completeness is equal to the percentage of valid quality assurance and quality control results.

The assessment should address the following:

Table 4: Data Completeness				
Field	Laboratory			
 All critical locations are sampled All samples collected from critical grids and depths Consistency in the use of standard operating procedures, equipment, sampler Completion and correctness of field documentation. 	 All critical samples and analytes are analysed in accordance with the SAQP, <i>if</i> <i>prepared</i> Appropriateness of laboratory methods and PQLs. 			

The minimum target frequency for each type of QA/QC sample should be carried out in accordance with the following tables:

Table 5: QA/QC Requirements					
Field QA/QC Sample	Frequency (Soil)	Frequency (Groundwater)			
Intra-Laboratory Duplicate	1 in 20 samples	1 in 20 samples			
Inter-Laboratory Duplicate	1 in 20 samples	1 in 20 samples			
Field Blanks	1 per day (Rinsate)	1 per day (Rinsate)			
Trip Blank	1 per sample batch	1 per sample batch			
Trip Spike	1 per sample batch	1 per sample batch			

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 20 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

Where any of the above objectives are not achieved for particular samples, steps will be taken to rectify the non-conformance, if possible. Alternatively, data qualifiers detailing the nature of the quality problem will be documented in the report and attached to relevant data in the result summary tables.

The target for overall completeness for each data set is a minimum of 95%. A data completeness of less than 95% may be accepted where it can be justified that the non-conformance does not have a significant effect on the outcome of the results.

5.3 Comparability

Data Comparability is the confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.

The qualitative assessment should address the following:

Table 6: Data Comparability					
Field	Laboratory				
 Consistency in the use of standard operating procedures, equipment, sampler Consistency in the method of sample collection for each media Quantification of influence by climatic conditions 	 Consistency of analytical methods and limits of reporting (LOR) for each analyte Whether laboratory limits of reporting are set at < 20% of the adopted site criteria value for each analyte Consistent use of one primary and one secondary laboratory 				

5.4 Representativeness

Data Representativeness is the confidence (expressed qualitatively) that data are representative of each media present on the site.

The qualitative assessment should address the following:

Table 7: Data Representativeness					
Field	Laboratory				
 Samples are collected in accordance with the SAQP, <i>if provided</i> Receipt of samples within holding times Receipt of intact samples Receipt of adequately preserved samples 	 All samples are extracted and analysed within their respective holding times 				

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd Page 21 of 55

ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

5.5 Representativeness

Data Precision is a quantitative measure of the variability (or reproducibility) of data.

Intra-laboratory or Inter-laboratory Duplicate Samples (B) results are compared with Primary Sample (A) results using Relative Percentage Differences (RPDs) according to the following formula:

$$\% RPD = \left| \frac{A - B}{A + B} \right| \times 200$$

Duplicate sampling rates for this assessment (**for each separate sample batch**) are to be tested for all the same analytes as the primary sample:

Table 8: Data Precision				
Type of QC Sample	Control Limit			
Field Intra-Laboratory Duplicate (Blind)	RPD < +/- 50%			
Field Inter-Laboratory Duplicate (Split)	RPD < +/- 50%			

Where the laboratory has reported results for a particular analyte below the limit of reporting for either the primary sample or a duplicate sample, the RPD is reported as 'Not Calculable' or NC. A discussion should be made as to which sample should be adopted and compared against the relevant assessment criteria. However, no discussion is required where both the primary sample and the duplicate sample for a particular analyte are below the limit of reporting.

5.6 Accuracy

Data Accuracy is a quantitative measure of the closeness of reported data to the true value. Laboratory measured recovery of analytes in lab control samples with known concentrations. Laboratory QA/QC testing is to include:

Table 9: Data Accuracy				
Laboratory QA/QC Sample	Frequency			
Method Blank	1 per 20 samples			
Matrix Spike	1 per 20 samples			
Laboratory Duplicate	Laboratory defined			
Laboratory Control	Laboratory defined			
Surrogate Spike	All organic samples			

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 22 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117

T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

6. SITE ASSESSMENT CRITERIA

6.1 General

Concentrations of contaminants in soil samples were compared against the National Environmental Protection Council (2013) site assessment criteria presented below and summarised in Appendix G.

- Health Investigation Levels (HIL) for Soil Contaminants NEPM HIL Residential 'A'
- Soil Health Screening Levels (HSL) for Vapour Intrusion HIL 'A'
- NEPM 2013 Management Limits for TRH Fractions F1-F4 in Soil Residential, Parkland and Public Open Space (Fine Grained Soils)
- NEPM 2013 ESLs for TRH fractions F1 F4, BTEX and benzo(a)pyrene in soil
- Health Screening Levels for Asbestos Contamination in Soil Residential, Guidelines for the Assessment, Remediation and Management Asbestos-Contaminated sites in Western Australia.

6.2 Soils Investigation and Screening Levels

6.2.1 Health Investigation Levels (HILs)

The NEPM presents Tier 1 Health Investigation Levels (HILs) for a broad range of chemicals such as metals, inorganics, PAHs, phenols, pesticides and other organics. The HILs are applicable to generic land uses such as residential, commercial/industrial or public open space and all soil types, generally within the first 3 metres of soil below ground level. The HILs have been applied to assess human health risks via all relevant pathways of exposure.

Based on the proposed development, soil investigation results within the proposed development site will be assessed against the following criteria:

• **HIL 'A'** - Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.

6.2.2 Health Screening Levels (HSLs)

The NEPM presents Tier 1 Health Screening Levels (HSLs) for the following petroleum compounds and fractions:

- Benzene, Toluene, Ethylbenzene and Xylenes (BTEX);
- Naphthalene, and
- TPH C6-C10 and TPH >C10-C16 fractions.

The HSLs are applicable to generic land uses such as residential, commercial/industrial or recreational/public open space and different soil types between the ground surface and soils >4 metres below ground level. The HILs have been applied to assess human health risks via the inhalation and direct contact pathways of exposure.

Point 1 of Table 1A (4), which indicates that HSL D can be used in lieu of HSL B for buildings that comprise car parks or commercial properties on the ground floor.

6.2.3 Interim Soil Vapour Health Investigation Levels (Interim HILs)

The NEPM presents Interim Soil Vapour Health Investigation Levels (Interim HILs) for selected Volatile Organic Chlorinated Compounds (VOCCs).

The Interim Soil Vapour HILs are applicable to generic land uses such as residential, commercial/industrial or recreational/public open space and all soil types within the first metre depth from the ground surface or the first metre depth beneath a sub-slab. The Interim Soil Vapour HILs have been applied to assess human health risks via the inhalation pathways of exposure.

6.2.4 Ecological Investigation Levels (EILs)

The NEPM presents Ecological Investigation Levels (Interim EILs) for As, Cu, CrIII, Ni, Pb, Zn, DDT and naphthalene.

The EILs are applicable to generic land uses such as areas of ecological significance, urban residential areas and public open space, and commercial/industrial land uses. The EILs have been applied to assess risks to terrestrial ecosystems, generally, within the top 2 metres of soil at the final surface/ground level.

Site specific EILs for Copper, Zinc, Nickel and Chromium III can be derived by adding the Ambient Background Concentration (ABC) to the Added Contaminant Limits (ACL), as per the following formula:

The ABC of a contaminant is the soil concentration in a specified locality that is the sum of the naturally occurring background level and the contaminant levels that have been introduced from diffuse or non-point sources by generating anthropogenic activity not attributed to industrial, commercial, or agricultural activities.

The ACL is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required. ACLs are based on the soil characteristics of pH, CEC and clay content. Different soils types / profiles will have different contaminant EILs rather than a single generic EIL for each contaminant. ACLs apply chromium III (CrIII),

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 24 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

copper (Cu), nickel (Ni) and zinc (Zn) for site-specific EIL determination. The soil properties to be measured for site-specific derivation of ACLs for CrIII, Cu, Ni and Zn are summarised below:

- pH Cu
- CEC Cu, Ni, Zn
- % clay CrIII

Note – *the lowest concentration of copper that is derived from the pH or the CEC calculation is to be used for the ACL.*

Insufficient data was available to derive ACLs for As, Pb, DDT and naphthalene. As a result, the derived EILs are generic to all soils and are presented as total soil contaminant concentrations in Tables 1(B)4 and 1(B)5.

6.2.5 Ecological Screening Levels (ESLs)

Table 1B (6) of the NEPM presents Ecological Screening Levels (ESLs) for TPH C6-C40 fractions, BTEX and benzo(a)pyrene.

The ESLs are applicable to generic land uses such as areas of ecological significance, urban residential areas and public open space, and commercial/industrial land uses. The ESLs have been applied to assess risks to terrestrial ecosystems, generally, within the top 2 metres of coarse or fine soil at the final surface/ground level.

6.2.6 Petroleum Hydrocarbon Management Limits

Table 1B (7) of the NEPM presents petroleum hydrocarbon management limits for application to TPH fractions C_6-C_{10} , $>C_{10}-C_{16}$, $>C_{16}-C_{34}$ and $>C_{34}-C_{40}$. The management limits are applicable for coarse or fine soils in residential, parkland, public open space or commercial/industrial land uses following consideration of relevant ESLs and HSLs.

6.2.7 Asbestos in Soils

Health screening for asbestos in soil, which are based on scenario-specific likely exposure levels, are adopted from the WA DoH Guidelines, and are referred in Table 8 in NEPM Schedule B1.

6.3 Export of Waste

Any soil to be removed from the site shall be classified in accordance with the NSW EPA (2014) "Waste Classification Guidelines, Part 1: Classifying Waste" before it can be disposed of off-site.

CONTAMINATION | REMEDIATION | HAZMAT | ASBESTOS

7. SOIL SAMPLING AND ANALYSIS PLAN

7.1 General Methodology

In order to meet the Data Quality Objectives, the investigation will comprise fieldwork and sample collection carried out in general accordance with the procedures outlined in the ECON Environmental fieldwork protocols which are based on industry accepted standard practice.

The sampling strategy is based on our current level of understanding of the site conditions and to address Council queries. However, the fieldwork and the soil sampling and analysis program may be subject to change based on the observations made during field work, such as depth of fill material, actual geology beneath the site and visual extent of contamination.

The drilling method adopted should ensure that no pathways of contamination are created between various soil strata encountered.

Each borehole was drilled into the underlying soils using a hand-held auger with an 100mm diameter auger bit.

The boreholes were backfilled with clean spoil or clean sand/gravel. Where a semi-confined or confined layer was encountered, a bentonite seal was used to prevent potential cross-contamination between the overlying and underlying strata.

A description of sub-surface conditions observed during drilling are presented in the field notes included in Appendix D.

The soil samples were collected on Monday 11 December 2023.

7.2 Soil Sampling Density and Sampling Location Rationale

Based on the available information, a targeted soil sampling plan was considered most appropriate to provide sufficient characterisation data of the insitu fill material within the investigative area, which posed a potential risk for containing hazardous substances, hence a targeting sampling plan was undertaken.

In accordance with the NSW EPA "Sampling Design Guidelines" (2022) for this sized investigative site (approx. 973m²), a total of eight (8) soil samples plus two (2) QA/QC samples are required to be collected to provide general site coverage. Additional sampling points may be incorporated to target specific areas of potential environmental concern identified above.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 26 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

7.3 Soil Sampling Depth

The sampling boreholes were advanced through the surface soil material to allow for the collection of at least one soil sample from the insitu soil material, approx. 0.0-0.3m BGL, where indicated. Natural soils were identified within the subject site at a depth of 0.3m BGL.

7.4 Soil Sampling Methodology

During the collection of soil samples, any features such as seepage, discoloration, staining, odours, or other physical indicators of groundwater contamination was noted.

Soil sampling was carried out in general accordance with ECON Environmental Fieldwork Protocols. In summary:

- Soil samples were collected using a hand-held auger using a 100mm diameter auger bit from each soil type or change in lithology. However, additional samples were collected where there was visual evidence of contamination,
- Samples were transferred into clean laboratory supplied containers, and
- In general, each soil sample was divided into two sub-samples. One of the sub-samples was placed into a laboratory-supplied container and a second sub-sample was placed in a separate zip-lock bag for field headspace screening using a PID.

Sampling of asbestos was undertaken as follows:

- A minimum 10L sample from each sample location was recovered,
- Each sample (minimum of 10 L) was screened through a 7mm sieve and the material retained on the sieve examined for any bonded ACM and / or suspect material and forwarded to the laboratory for analysis if any suspected ACM is encountered,
- If visible FA material is present or suspected, the soil was wetted to minimise the release of fibres,
- Identified bonded ACM and FA was weighed for each sample, and
- One wetted 500ml sample from each sampling location was submitted to a NATA accredited laboratory for analysis for AF. Soil asbestos analysis should comply with Australian Standard Method for the Qualitative Identification of asbestos in bulk samples (AS4964–2004).

7.5 Soil Laboratory Analysis

The laboratory used for the analysis of all samples was ALS Environmental located at 277-289 Woodpark Road, Smithfield NSW Australia. The laboratory is NATA accredited for the selected analyses. The completed analysis schedule is summarised in Table 10 below providing a diverse range of analytes with the full laboratory certificates in Appendix G:

Table 10: Analytical Schedule.					
Sample ID	Location	Analytes			
Soil Samples BH1 to BH8 (11.12.2023)	Insitu soil material within the entire subject site.	 Heavy Metals TRH, BTEX, PAH, PCBs OC/OP Pesticides, Phenols Asbestos 			

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 28 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

8. QUALITY ASSURANCE / QUALIY CONTROL

8.1 Site Procedures

The following field quality assurance and quality control measures were implemented:

- 1. All sample jars and sample bags were clearly labelled prior to site visit,
- 2. All soil samples were collected by hand (after using a hand-held auger with a 100mm drill),
- 3. Disposable gloves were worn throughout the process and changed between the collection of each soil sample,
- 4. All sampled jars and bags were immediately placed in an ice-block chilled esky,
- 5. All samples were clearly labelled and sealed for couriering,
- 6. The ALS Environmental chain-of-custody form was completed and emailed to the lab as well as a hard copy placed with the samples,
- 7. All samples were kept in the office of ECON Environmental Pty Ltd until collected by courier,
- 8. Ice-bricks were interchanged prior to couriering.

8.2 Field QA/QC

8.2.1 General

The frequency required for each field quality assurance / quality control (QA/QC) sample is presented in the table below.

Table 11: QA/QC Sampling Frequency					
	Intra-Lab Duplicates	Inter-Lab Duplicates	Rinsates	Trip Blanks	Trip Spikes
Sampling Frequency	1 in 20 primary samples	1 in 20 primary samples	1 / Day	1 / Day	1 / Day

8.2.2 Field Duplicates

Duplicates of primary samples were collected to enable the assessment of variability in analyte concentrations between samples collected from the same sampling point. The tables below list the duplicate soil and groundwater samples collected with their corresponding primary samples.

Table 12: Soil Field Duplicate Samples					
Primary Sample ID	Sample Depth (m BGL)	Blind Duplicate ID	Split Duplicate ID	Date Sampled	
BH1	0.2-0.3m	D1	-	11.12.2023	

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 29 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

8.2.3 Sample Handling, Storage and Transport

The following sampling handling, storage and transport procedures were adopted to ensure sample integrity:

- Samples were collected in laboratory supplied containers. A list of sample preservation methods and the types of sample containers used are attached in Appendix I,
- Soil and groundwater sample containers were placed immediately into a chilled cooler box and dispatched to their respective analytical laboratories on the same day. If this was not possible, samples were temporarily held overnight in the ECON Environmental office refrigerator at a temperature of no greater than 4 °C and dispatched the following day,
- A Chain of Custody form (COC) was completed for all samples collected and included with the samples for transport to their respective laboratories for chemical analysis. Copies of COCs are included in Appendix F.
- All glass bottles were individually bubble wrapped for protection and insulated containers/coolers were used for sample shipment.
- Disposable nitrile gloves were used for OH&S purposes and were changed between every sample location.

8.2.4 Decontamination Procedures

The decontamination of non-dedicated sampling equipment was achieved by washing with phosphate-free detergent and tap water, followed by a final rinse with distilled water. Decontamination was conducted after the collection of soil samples at each sample location. A clean pair of disposable gloves was used when handling each soil sample.

The drilling augers were decontaminated between sampling locations by physically removing soil material between boreholes, washing the augers with Decon 90 and rinsing them with water.

8.3 Laboratory QA/QC

8.3.1 Laboratories Used

The following NATA-accredited laboratories were commissioned to carry out laboratory analysis of soil, groundwater and soil vapour samples collected:

- Primary Laboratory ALS Laboratories (Sydney)
- Secondary Laboratory ALS Laboratories (Newcastle) to conduct asbestos analysis on selected soil samples.

These laboratories also operate Quality Systems that are designed to comply with ISO/IEC 17025.

All primary samples, blind duplicates, rinsate samples, trip blank/spikes were dispatched to the primary laboratory.

Laboratory Certificates of Analysis are included in Appendix G.

8.3.2 Holding Times

The holding times for chemicals analysed are presented in Appendix G and were based on USEPA methods, Standard Methods for the Examination of Water and Wastewater (APHA).

8.3.3 Test Methods and Practical Quantitation Limits

The test methods adopted by ALS Laboratories – Sydney & Newcastle are listed in Appendix F and Practical Quantitation Limits (PQLs) adopted are specified within the Laboratory Certificates of Analysis included in Appendix F.

The methods used by the laboratories generally comply with those listed in the NEPM and the ANZG, "Australian and New Zealand Guidelines for Fresh and Marine Water Quality" (2018). Alternate methods used by the laboratories (i.e. not identified in the NEPM and ANZECC guidelines) have been validated by the laboratories, as recommended in the NEPM and ANZECC guidelines, and endorsed by NATA.

8.4 QA/QC Data Evaluation

A full evaluation of the Data Quality Indicators (DQIs) for both fieldwork and laboratory procedures are presented in Appendix G. These were assessed with reference to Appendix V of the NEPM and Contaminated Land Management - Guidelines for the NSW Site Auditor Scheme (3rd Edition, 2017). In summary, the findings of the QA/QC evaluation indicated the following:

- Data Completeness The data set is considered to be adequately complete. However, the following minor non-conformances were identified:
 - Trip blanks and trip spikes were not collected during the soil investigation. However, given that Heavy Metals, TPH C6-C10 fraction and BTEX concentrations were not detected in any of the samples during the detailed site investigation, this was not considered to affect the outcome of the results.
- Data Comparability The data set is considered to be adequately comparable.
- Data Representativeness The data set is considered to be adequately representative.
- Data Precision The data set is considered to be adequately precise.
- Data Accuracy The data set is considered to be adequately accurate.

As shown in Appendix F – Summary of Results, the RPDs for all the analytes were within their respective control limits. Therefore, the data set is considered to be adequately precise.

The sampling methods (including sample preservation, transport and decontamination procedures) and laboratory methods followed during this investigation works were consistent with ECON Environmental protocols and were found to meet the DQOs for this project.

It is therefore considered that the data is sufficiently reliable and that the results can be used for the purpose of this project.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 32 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

9. FIELD OBSERVATIONS

9.1 Site Inspection

A site inspection was carried out on Monday 11 December 2023 by ECON Environmental's representative Con Kariotoglou, which involved a visual assessment of the entire site and surrounding areas to identify areas of potential environmental concern within the subject site. At the time of the inspection, the following observations were noted:

- The site was unoccupied and consisted of a single-storey brown brick residential house, with terracotta roof tiles, and a concrete hardstand driveway from Lowana Street to the house.
- A detached granny flat was observed at the rear of the residential house.
- A small metal shed was observed within the northwestern portion of the site.
- Loose building and vegetation debris was observed scattered throughout the property.
- The majority of the site was covered by overgrown grass with two large trees within the northeastern boundary of the site.
- The ground surface falls approximately 1 metre to the north.
- The residential house may contain hazardous building materials (Asbestos sheeting), for example, within exterior eaves which may require further investigations.
- No hydrocarbon staining was observed on surface topsoils or within any of the borehole locations,
- No hydrocarbon odours were encountered within any of the borehole locations,
- No visible fragments of ACM were detected on surface soils.

9.2 Surface and Subsurface Conditions

Based on surface and sub-surface conditions observed during the intrusive investigation, the surface and sub-surface profile across the site is summarised in the table below.

Table 13: Summary of Geological Observations				
Sample Nos.	Location	Geological Unit	Lithological Description	Depth (m BGL)
BH1-BH8	Entire Site	Fill	Silty Clay, light to dark brown, dry, with minor inclusions of rocks and gravel.	0.0-0.3m into the underlying soils. Natural soils were encountered at a depth of 0.3m BGL.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 33 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

10. LABORATORY RESULTS

10.1 General

A comparison of soil laboratory results against their respective assessment criteria (as specified in Section 6) are presented in the summary tables in Appendix F. Certificates of laboratory analysis are attached in Appendix G. A discussion of the results is presented in the following sub-sections.

10.2 Soil Results

10.2.1 Heavy Metals

10.2.1.1 Health Investigation Levels (HILs)

As indicated in Table B, the concentrations of the discrete heavy metals were **BELOW** the Health Investigation Level (HIL) for a residential development, that being the HIL 'A'.

10.2.1.2 Ecological Investigation Levels (EILs)

As indicated in Table B, the arsenic concentrations were **BELOW** the Ecological Investigation Level (EIL) for urban residential and public open space.

10.2.2 TRH, BTEX, Naphthalene &/or Benzo(a)pyrene

10.2.2.1 Health Screening Levels (HSLs)

As indicated in Table C, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), benzene, toluene, ethyl benzene, xylenes and naphthalene concentrations were **BELOW** the HSL 'A' & HSL 'B' for a sandy loam soil profile with a source depth of "0m to <1m" and "1m-2m".

10.2.2.2 Ecological Screening Levels (ESLs)

As indicated in Table D, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), F3 (C_{16} - C_{34}), F4 (C_{34} - C_{40}), benzene, toluene, ethyl benzene, xylenes and benzo(a)pyrene concentrations were **BELOW** the ESL for a fine-grained soil texture in an "residential" environment.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 34 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

10.2.2.3 Management Limits

As indicated in Table E, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), F3 (C_{16} - C_{34}), F4 (C_{34} - C_{40}), benzene, toluene, ethyl benzene, xylenes and benzo(a)pyrene concentrations were **BELOW** the Management Limits for a fine-grained soil texture in an "residential" environment.

10.2.3 PAH, OCP, PCB, Phenols

10.2.3.1 Health Investigation Levels (HILs)

As indicated in Table F, the concentrations of the benzo(a)pyrene (as TEQ), Total PAH, OCP, PCB, Phenols were **BELOW** the Health Investigation Level (HIL 'A') for a residential development.

10.2.3.2 Ecological Investigation Levels (EILs)

As indicated in Table F, the concentrations of naphthalene and DDT/DDE/DDD were **BELOW** the Ecological Investigation Level (EIL) for a residential development.

10.2.3.3 Ecological Screening Levels (ESLs)

As indicated in Table F, the concentrations of the benzo(a)pyrene were **BELOW** the Health Investigation Level (HIL 'A') for a residential development.

10.2.4 Asbestos

As indicated in Table G, the concentrations of Asbestos were **BELOW** the Health Investigation Level (HIL 'A') for a residential development.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 35 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

11. REFINED CONCEPTUAL SITE MODEL

11.1 Conceptual Site Model

The refined Conceptual Site Model (CSM) presented in the table below provides a representation of the potential risks associated with the linkages between the following elements:

- Potential contamination sources and their associated contaminants of concern identified in Section 3. Only potential areas of concern with a significance rating of low to high were included,
- Potential human receptors that may be impacted by site contamination are current and future end-users, construction workers and the general public within the immediate vicinity,
- Potential environmental receptors identified in Section 3,
- Potential exposure pathways, and
- Whether each source-pathway-receptor pollution linkage are complete, limited or not present, based on current and future site conditions.

Table 14: Conceptual Site Model					
Potential Sources	Potential Receptor	Potential Exposure Pathways	Complete Linkages	Risk	Justification
Contaminated soil from historical use of the site as well as historical business activities surrounding the subject site.Site users or the general publicThe aquatic ecosystemsThe aquatic ecosystemsUnderlying 	or the	Dermal contact, inhalation or	Limited (current)	Low	No soil contamination was identified within the fill material of the subject site.
	public	ingestion of exposed impacted soils	No (future)	Negligible	No soil contamination was identified within the fill material of the subject site.
	aquatic imp ecosystems soi gro and	Migration of impacted soils into groundwater and surface water run-off	Yes (current)	Low	No soil contamination was identified within the fill material of the subject site.
			No (future)	Negligible	No soil contamination was identified within the fill material of the subject site.
		Limited (Current)	Low	No soil contamination was identified within the fill material of the subject site.	
		No (Future)	Negligible	No soil contamination was identified within the fill material of the subject site.	

Table 14: Conceptual Site Model

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page **36** of **55**

ECON Environmental Pty LtdABN 25 641 106 7831 St Aidans Avenue Oatlands NSW 2117T: 1800 00 ECONE: info@econenvironmental.com.auW: www.econenvironmental.com.au

12. CONCLUSION AND RECOMMENDATIONS

Based on the data and evidence collected during this detailed site investigation, including the review of previous environmental investigations undertaken with the subject site, the findings of this Detailed Site Investigation are as follows:

12.1 Site Observations

On Monday 11 December 2023 a site inspection was conducted by ECON Environmental's representative Con Kariotoglou. At the time of inspection, the following observations were noted:

• No potential visible environmental areas of concern were identified within the subject site.

12.2 Soil Laboratory Results

All eight (8) soil samples, plus two (2) QA/QC sample collected (BH1 to BH8) within the subject site on Monday 11 December 2023, were reported by the laboratory to have concentrations **BELOW** the adopted site assessment criteria for HIL A, land use as per the NEPM, 2013.

12.3 Potential Risks to Onsite and Offsite Receptors

Human and ecological exposure to the potential contaminants identified is currently considered as **LOW**, as no soil contamination was identified within the fill material of the subject site during our investigation.

12.4 Potential for Migration of Contaminants

Based on the results of this investigation it is considered that the risks to human health and the environment associated with potential migration of contamination from the subject site to adjacent neighbouring properties is considered as **LOW** within the context of the proposed use of the site for residential purposes, as no soil contamination was identified during this investigation.

12.5 Recommendations

Based on the results of this Detailed Site Investigation by ECON Environmental, it is our opinion that the subject site located at Lot 634 in DP36612, identified as 16 Lowana Street Villawood NSW 2163, is **SUITABLE** for the proposed residential development and land use.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

13. LIMITATION STATEMENT

ECON Environmental Pty Ltd has undertaken the following report in accordance with the scope of works set out between ECON Environmental Pty Ltd and the client. ECON Environmental Pty Ltd derived the data in this report primarily from the site and soil assessment conducted on the date of site inspection. The impacts of future events may require future investigation of the site and subsequent data analysis, together with a re-evaluation of the conclusions and recommendations of this report.

In preparing this report, ECON Environmental Pty Ltd has relied upon, and assumed accurate, certain site information provided by the client and other persons. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. ECON Environmental Pty Ltd accepts no liability or responsibility whatsoever for or in respect to any use or reliance upon this report by any third party.

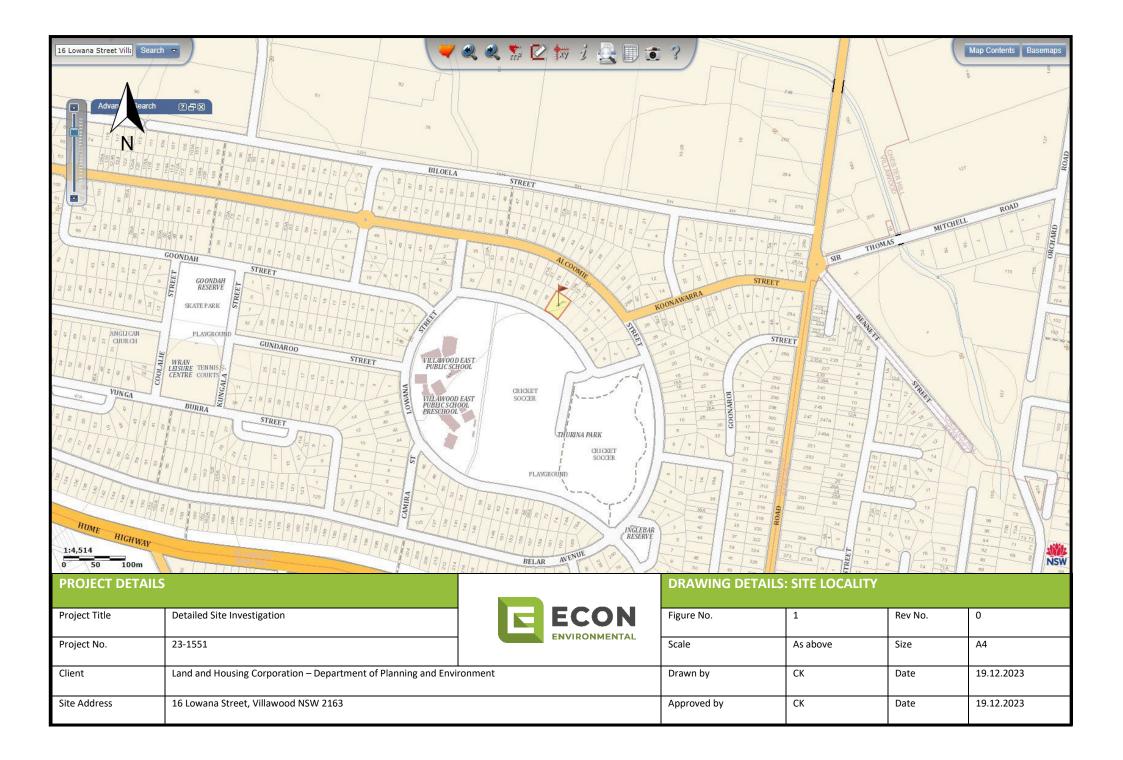
The information contained within this report have been prepared exclusively for the client. ECON Environmental Pty Ltd have prepared the report to address the risk associated with scale of the works. The report has been prepared with a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia. No other warranty, expressed or implied, is made or intended. This report is to be read in its entirety including attachments and appendices and should not read in individual sections.

A third party should not rely upon the information prior to making an assessment that the scope of work conducted meets their specific needs. ECON Environmental Pty Ltd cannot be held liable for third party reliance on this document.

ECON Environmental Pty Ltd professional opinions are based upon its professional judgment, experience, training and results from analytical data. In some cases, further testing and analysis may be required, thus producing different results and/or opinions. ECON Environmental Pty Ltd has limited its investigation to the scope agreed upon with its client.

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

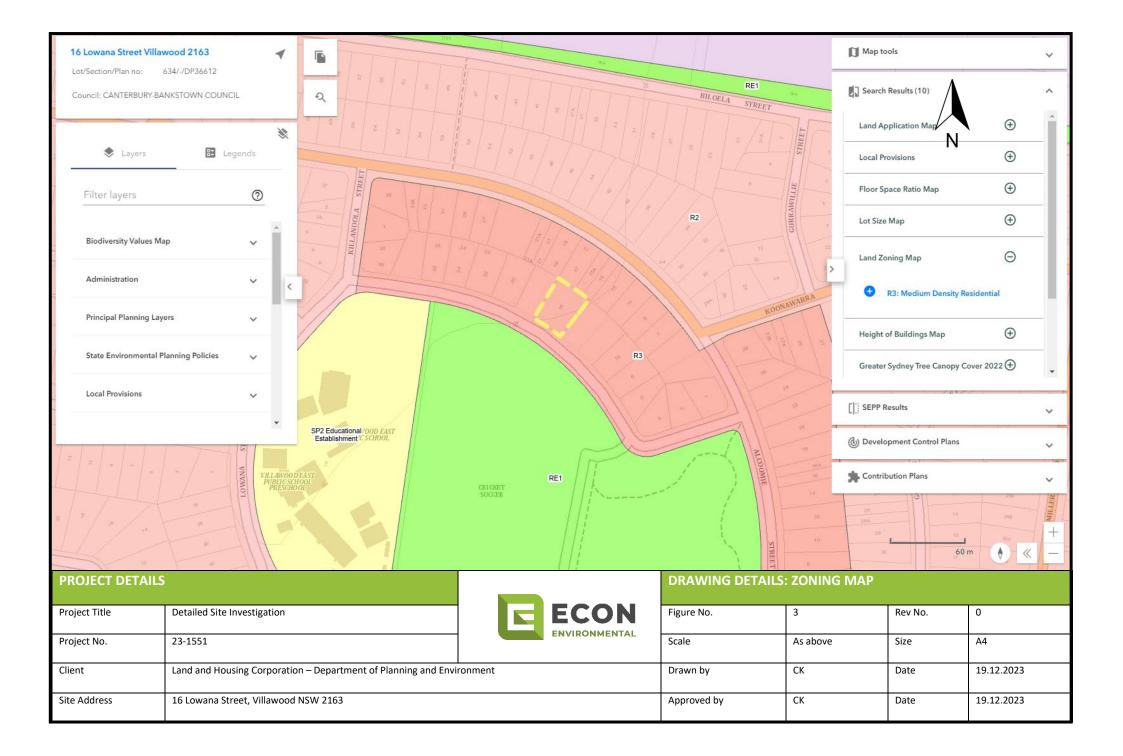
Page 38 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au



APPENDIX A: SITE PLANS

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

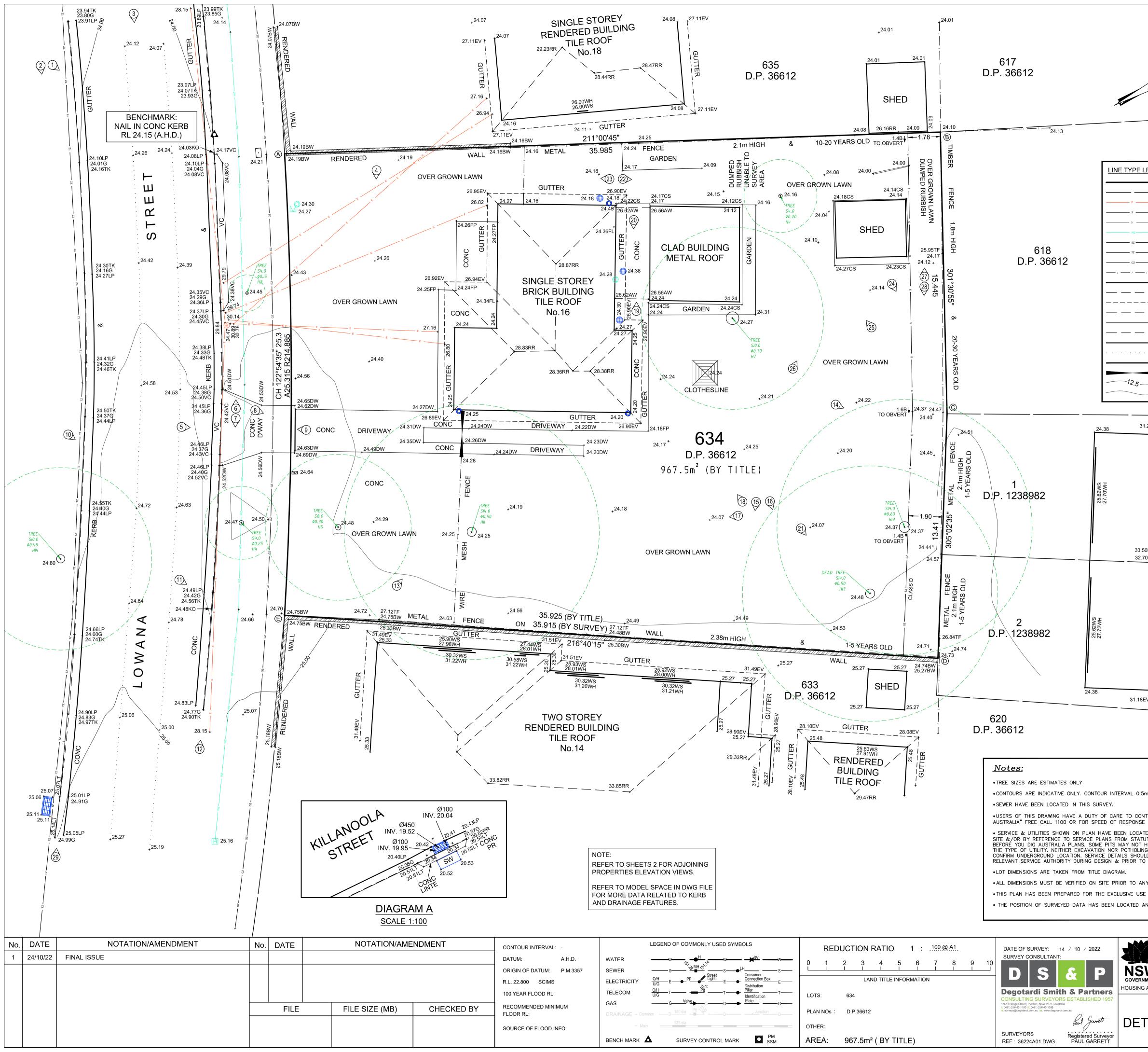
Page 39 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au


CONTAMINATION | REMEDIATION | HAZMAT | ASBESTOS

PROJECT DETAILS

Project Title	Detailed Site Investigation	E ECON	Figure No.	2	Rev No.	0
Project No.	23-1551	ENVIRONMENTAL	Scale	As above	Size	A4
Client	Land and Housing Corporation – Department of Planning and Envi	ronment	Drawn by	СК	Date	19.12.2023
Site Address	16 Lowana Street, Villawood NSW 2163		Approved by	СК	Date	19.12.2023

PROJECT DETAILS


Project Title	Detailed Site Investigation		Figure No.	5	Rev No.	0
Project No.	23-1496	ENVIRONMENTAL	Scale	As above	Size	A4
Client	Land and Housing Corporation – Department of Planning and Env	ironment	Drawn by	СК	Date	19.12.2023
Site Address	16 Lowana Street, Villawood NSW 2163		Approved by	СК	Date	19.12.2023

APPENDIX B: DEVELOPMENT PLANS

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 40 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

BUILDING ROOF/RIDGE BUILDING EAVE & GUTTER AWNING TOP OF KERB GUTTER FLOW LINE LIP OF KERB CROWN OF ROAD APPROXIMATE WINDOW POSITION GATE MAJOR CONTOUR MINOR CONTOUR 122EV 24.38 TWO STOREY BRICK BUILDING METAL ROOF No.15 ALCOOMIE ST SOURR SWARE SOURT SOURR SWARE SOURD SUBJECT SOURCES SUBJECT SUBJECT SOURCES SUBJECT SUBJECT SOURCES SUBJECT SUBJECT SOURCES SUBJECT SUBJECT	O STATE SURVEY MARK (A) BOUNDARY CORNER (A) PHOTO LOCATION TREE (SPREAD, TRUNK DIAMETER & HEIGHT OF TREE) * 24.18 SURVEY SHOT R.L. 25.30BW BOTTOM OF WALL R.L. 24.34FL FLOOR LEVEL R.L. 24.27CS CONCRETE SLAB R.L. 26.56AW AWNING R.L. 28.83RR ROOF/RIDGE R.L. 24.49DW DRIVEWAY (CONC) R.L. 24.49DW DRIVER FLOW LINE (CONC) R.L. 24.39DK LIP OF KERB (CONC) R.L. 24.39DK LIP OF KERB (CONC) R.L. 25.41LT LINTEL (CONC) R.L. 23.78K0I KERB OUTLET INVERT R.L. 30.36WH WINDOW HEAD R.L. 26.84TF TOP OF FENCE R.L. VC	
m. TACT "BEFORE YOU DIG VISIT www.byda.com.au FED BY PHYSICAL EVIDENCE ON UTORY AUTHORITIES SUCH AS HAVE BEEN OPENED TO VERIFY IG HAVE BEEN CARRIED OUT TO LD BE CONFIRMED WITH THE D ANY CONSTRUCTION. E OF NSW LAND AND HOUSING CORP. NY CONSTRUCTION. E OF NSW LAND AND HOUSING CORP. ND PART OF THI TRANSMITTED IN EXCEPT AS PERM ANY PERMITTED REPRODUCTION CO ORIGINAL SURVEY THIS NOTICE MUS	CLEARANCES TO BOUNDARIES OR OTHER FEATURES ARE CRITICAL AND NOT SHOWN FURTHER SURVEY MAY BE REQUIRED. AVE BEEN DEFINED AS PART OF THIS SURVEY. TION ON OR NEAR BOUNDARIES WILL REQUIRE FURTHER SURVEY IN ORDER FINING BOUNDARIES CAN BE PLACED. DISTANCES OF BOUNDARIES ARE BY TITLE ONLY WITH BEARINGS RELATED TO RUE NORTH IS REQUIRED A FURTHER SURVEY WOULD BE NECESSARY. DEGOTARDI SMITH & PARTNERS SURVEYORS 2022. S SURVEY MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR ANY FORM, WITHOUT THE WRITTEN PERMISSION OF THE COPYRIGHT OWNER MITTED BY THE COPYRIGHT ACT 1968. DOWNLOADING, ELECTRONIC STORAGE, DISPLAY, PRINT, COPY OR OF THIS SURVEY SHOULD CONTAIN NO ALTERATION OR ADDITION TO THE Y. ST NOT BE ERASED. ILOCATION VILLAWOODD	
Environment S AND PROPERTY GROUP - Land & Housing Corporation DRAWING TITLE	STREET ADDRESS TYPE 16 LOWANA STREET	
FAIL & LEVEL SURVEY	SITE LAYOUT JOB SHT. 1 / / / OF 2	

LEGEND :					
	SUBJECT BOUNDARY				
	ADJOINING BOUNDARY				
	OVERHEAD ELECTRICITY LINE				
	SEWER LINE				
	DRAINAGE LINE				
	WATER MAIN (DBYD)				
	SEWER LINE (DBYD)				
	TELSTRA LINE (DBYD)				
	GAS LINE (DBYD)				
_ /	FENCE				
	BUILDING OUTLINE				
	BUILDING ROOF/RIDGE				
	BUILDING EAVE & GUTTER				
	AWNING				
	TOP OF KERB				
	GUTTER FLOW LINE				
	LIP OF KERB				
	CROWN OF ROAD				
	APPROXIMATE WINDOW POSITION				
	GATE				
	MAJOR CONTOUR				

Ċ	ż ż	
EGEN	<u>D :</u>	
	SUBJECT BOUNDARY	
	ADJOINING BOUNDARY	
	OVERHEAD ELECTRICITY LINE	

YOU DIG www.byda.com.au LOT 634 BOUNDARY CORNERS M.G.A. CO-ORDINATES

BEFORE

CORNER EASTING NORTHING 313906.151 6248320.966 Α 6248351.807 313924.691 В С 313937.857 6248343.727 313948.837 6248336.027 D 313927.389 6248307.221 F

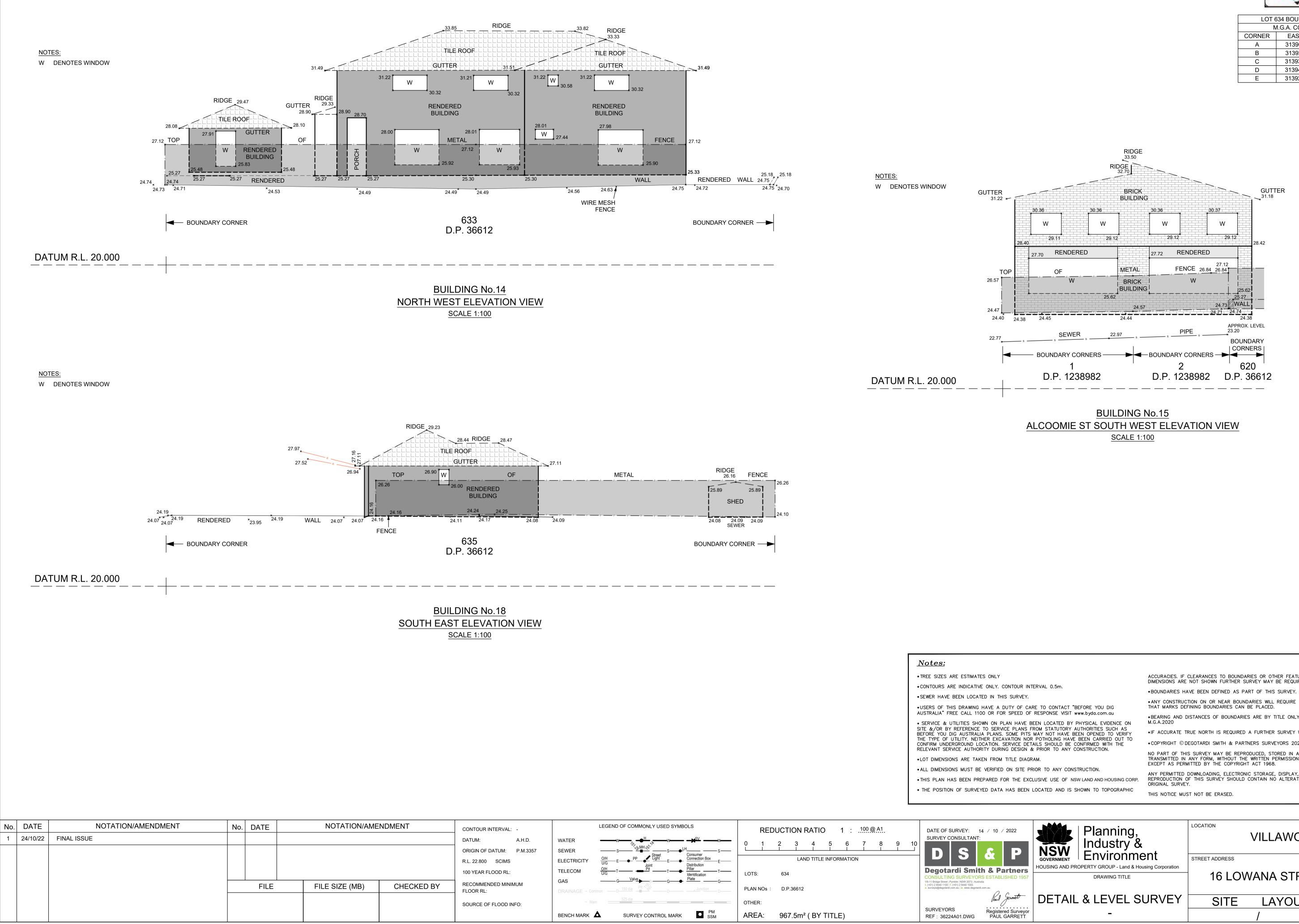
LEGEND :

-

 \bigcirc

GRATED DRAIN

WATER METER


WATER TAP

DOWN PIPE

WATER HYDRANT

CIRCULAR GRATED DRAIN

TELSTRA SINGLE CONC. PIT

LOT 634 BOUNDARY CORNERS					
N	I.G.A. CO-ORDINA	ATES			
CORNER	EASTING	NORTHING			
А	313906.151	6248320.966			
В	313924.691	6248351.807			
С	313937.857	6248343.727			
D	313948.837	6248336.027			
E	313927.389	6248307.221			

ACCURACIES. IF CLEARANCES TO BOUNDARIES OR OTHER FEATURES ARE CRITICAL AND DIMENSIONS ARE NOT SHOWN FURTHER SURVEY MAY BE REQUIRED.

• ANY CONSTRUCTION ON OR NEAR BOUNDARIES WILL REQUIRE FURTHER SURVEY IN ORDER THAT MARKS DEFINING BOUNDARIES CAN BE PLACED. •BEARING AND DISTANCES OF BOUNDARIES ARE BY TITLE ONLY WITH BEARINGS RELATED TO

•IF ACCURATE TRUE NORTH IS REQUIRED A FURTHER SURVEY WOULD BE NECESSARY. •COPYRIGHT © DEGOTARDI SMITH & PARTNERS SURVEYORS 2022.

NO PART OF THIS SURVEY MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED IN ANY FORM, WITHOUT THE WRITTEN PERMISSION OF THE COPYRIGHT OWNER EXCEPT AS PERMITTED BY THE COPYRIGHT ACT 1968.

ANY PERMITTED DOWNLOADING, ELECTRONIC STORAGE, DISPLAY, PRINT, COPY OR REPRODUCTION OF THIS SURVEY SHOULD CONTAIN NO ALTERATION OR ADDITION TO THE

Planning, Industry & Environment	LOCATION VILLAWOOD STREET ADDRESS	
G AND PROPERTY GROUP - Land & Housing Corporation	16 LOWANA STREET	TYPE S
TAIL & LEVEL SURVEY	SITE LAYOUT JOB	SHT. 2
-	/ /	OF 2

APPENDIX C: SITE PHOTOGRAPHS

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 41 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

CONTAMINATION | REMEDIATION | HAZMAT | ASBESTOS

Photo 1: Showing borehole BH1 sampling location, 11.12.2023.

Photo 2: Showing borehole BH1 sampling location, looking northeast, 11.12.2023.

Page **42** of **55**

ECON Environmental Pty LtdABN 25 641 106 7831 St Aidans Avenue Oatlands NSW 2117T: 1800 00 ECONE: info@econenvironmental.com.auW: www.econenvironmental.com.au

Photo 3: Showing borehole BH2 sampling location, 11.12.2023.

Photo 4: Showing borehole BH2 sampling location, looking northwest, 11.12.2023.

Page **43** of **55**

ECON Environmental Pty LtdABN 25 641 106 7831 St Aidans Avenue Oatlands NSW 2117T: 1800 00 ECONE: info@econenvironmental.com.auW: www.econenvironmental.com.au

Photo 5: Showing borehole BH3 sampling location, 11.12.2023.

Photo 6: Showing borehole BH3 sampling location, looking southwest, 11.12.2023.

Page 44 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

Photo 7: Showing borehole BH4 sampling location, 11.12.2023.

Photo 8: Showing borehole BH4 sampling location, looking west, 11.12.2023.

Page 45 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

Photo 9: Showing borehole BH5 sampling location, 11.12.2023.

Photo 10: Showing borehole BH5 sampling location, looking south, 11.12.2023.

Page **46** of **55**

ECON Environmental Pty LtdABN 25 641 106 7831 St Aidans Avenue Oatlands NSW 2117T: 1800 00 ECONE: info@econenvironmental.com.auW: www.econenvironmental.com.au

Photo 11: Showing borehole BH6 sampling location, 11.12.2023.

Photo 12: Showing borehole BH6 sampling location, looking north, 11.12.2023.

Page 47 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

Photo 13: Showing borehole BH7 sampling location, 11.12.2023.

Photo 14: Showing borehole BH7 sampling location, looking north, 11.12.2023.

Page 48 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

Photo 15: Showing borehole BH8 sampling location, 11.12.2023.

Photo 16: Showing borehole BH8 sampling location, looking west, 11.12.2023.

Page **49** of **55**

ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

Photo 17: Showing eastern portion of subject site. Looking north, 11.12.2023.

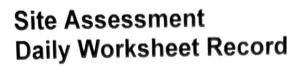
Photo 18: Showing main residence, looking north, 11.12.2023.

Page 50 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

Photo 19: Showing backyard of subject site, looking northwest, 11.12.2023.

Photo 20: Showing front yard of subject site, looking west, 11.12.2023.

Page 51 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au



APPENDIX D: FIELDNOTES

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 52 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

CONTAMINATION | REMEDIATION | HAZMAT | ASBESTOS

	PROJECT NO: 23-1557
PROJECT NAME:	
CLIENT: Land & Housing Co	DATE: 11.12-23
SITE ADDRESS: 16 Lowana	St Villawood
SITE CONTACT: Davien D'Me	16 PHONE: 0468318684
	01107000
TITLE: Envidonmenta Cons	- Hat PHONE: 0452654962
FIELD NOTES:	
Start Time	Finish Time (2.30,
Weather Sung	Rainfall (mm) NIL
Wind Direction	Wind Speed 9 km/h
Humidity 7(%	Temperature 2ら、「く
Environmental and Safety Concerns	
Odours Present PIL	Staining Present いて
USTs Present	ACM Present
Chemicals Present	Other Hazards Present N (L
Actions	
Site Safety Induction P/IA	Stormwater Control
Dust Suppression	Traffic Control
Machinery onsite	Equipment onsite Estry APIE.
Other Comments Have	l Arger Sayle jas/ 100gs ice brides

Description of Site Activities

Sample No. (show on site plan)	Depth (m)	Material Description Fill / Natural	PID (ppm)
) BH1	0-2-0.3	(FILL) Sitty day lo	
BH2	0-1-0-2	To sour to dale	bron.
BH3	0-1-0.2	a Mindisor	
BH4	6.1-0.2	of rodes & grant	
BHS	0-0.1	1 O SHEC	ly
BHG	0.(-0.2	Natural - Surg	EL,
BH7 BH8	0.2-0.3	@	·······
OHUN	0.01	Natural - Silty C @ 0.3 m l oroge brom	
4	·····		
& No	odours a	dereded	
¥ No	eil Sva	ny detected	
x No	ACM	detected	
F 190	<u>v</u> 1. C. v. (000000	

APPENDIX E: SITE ASSESSMENT CRITERIA

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 53 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

CONTAMINATION | REMEDIATION | HAZMAT | ASBESTOS

6 Tabulated investigation and screening levels

ROUNDING APPLIED TO INVESTIGATION AND SCREENING LEVELS

Tables 1A (HILs and interim HILs)

Rounded to 1 or 2 significant figures (see Schedule B7 Appendix C for details)

Tables 1A (HSLs) and 1B (EILs and ESLs) rounding rules

<1	to nearest 0.1				
1-<10	to nearest whole number				
1-< 100	to nearest 5				
100-<1,000	to nearest 10				
1,000-<10,000	to nearest 100				
≥10,000	to nearest 1,000				
Numbers ending in	Numbers ending in '5' are rounded up, for example:				
0.05 rounded to	0.05 rounded to 0.1				
1.5 rounded to 2					
115 rounded to 120					

	Health-based investigation levels (mg/kg)			
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial/ industrial ¹ D
	Metals a	and Inorganics		
Arsenic ²	100	500	300	3 000
Beryllium	60	90	90	500
Boron	4500	40 000	20 000	300 000
Cadmium	20	150	90	900
Chromium (VI)	100	500	300	3600
Cobalt	100	600	300	4000
Copper	6000	30 000	17 000	240 000
Lead ³	300	1200	600	1 500
Manganese	3800	14 000	19 000	60 000
Mercury				
(inorganic) ⁵	40	120	80	730
Methyl mercury ⁴	10	30	13	180
Nickel	400	1200	1200	6 000
Selenium	200	1400	700	10 000
Zinc	7400	60 000	30 000	400 000
Cyanide (free)	250	300	240	1 500
	Polycyclic Aromat	ic Hydrocarbons (PAHs)	
Carcinogenic				
PAHs				
(as BaP TEQ) ⁶	3	4	3	40
Total PAHs ⁷	300	400	300	4000
]	Phenols		
Phenol	3000	45 000	40 000	240 000
Pentachlorophenol	100	130	120	660
Cresols	400	4 700	4 000	25 000
	Organoch	lorine Pesticides		
DDT+DDE+DDD	240	600	400	3600
Aldrin and dieldrin	6	10	10	45
Chlordane	50	90	70	530
Endosulfan	270	400	340	2000
Endrin	10	20	20	100
Heptachlor	6	10	10	50
НСВ	10	15	10	80
Methoxychlor	300	500	400	2500
Mirex	10	20	20	100
Toxaphene	20	30	30	160
· · · ·		erbicides		
2,4,5-T	600	900	800	5000
2,4-D	900	1600	1300	9000
MCPA	600	900	800	5000

Table 1A(1) Health investigation levels for soil contaminants

	Health-based investigation levels (mg/kg)				
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial/ industrial ¹ D	
МСРВ	600	900	800	5000	
Mecoprop	600	900	800	5000	
Picloram	4500	6600	5700	35000	
Other Pesticides					
Atrazine	320	470	400	2500	
Chlorpyrifos	160	340	250	2000	
Bifenthrin	600	840	730	4500	
	Othe	er Organics			
PCBs ⁸	1	1	1	7	
PBDE Flame					
Retardants					
(Br1–Br9)	1	2	2	10	

Notes:

(1) Generic land uses are described in detail in Schedule B7 Section 3

HIL A – Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.

HIL B – Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

HIL C – Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate.

HIL D - Commercial/industrial, includes premises such as shops, offices, factories and industrial sites.

- (2) Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate (refer Schedule B7).
- (3) Lead: HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate.
- (4) Methyl mercury: assessment of methyl mercury should only occur where there is evidence of its potential source. It may be associated with inorganic mercury and anaerobic microorganism activity in aquatic environments. In addition the reliability and quality of sampling/analysis should be considered.
- (5) Elemental mercury: HIL does not address elemental mercury. A site-specific assessment should be considered if elemental mercury is present, or suspected to be present,
- (6) Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

PAH species		PAH species	TEF
Benzo(a)anthracene	0.1	Benzo(g,h,i)perylene	0.01
Benzo(a)pyrene	1	Chrysene	0.01
Benzo(b+j)fluoranthene	0.1	Dibenz(a,h)anthracene	1
Benzo(k)fluoranthene	0.1	Indeno(1,2,3-c,d)pyrene	0.1

Where the B(a)P occurs in bitumen fragments it is relatively immobile and does not represent a significant health risk.

- (7) Total PAHs: HIL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998). The application of the total PAH HIL should consider the presence of carcinogenic PAHs and naphthalene (the most volatile PAH). Carcinogenic PAHs reported in the total PAHs should meet the B(a)P TEQ HIL. Naphthalene reported in the total PAHs should meet the relevant HSL.
- (8) PCBs: HIL relates to non-dioxin-like PCBs only. Where a PCB source is known, or suspected, to be present at a site, a site-specific assessment of exposure to all PCBs (including dioxin-like PCBs) should be undertaken.

	Interim soil vapour HIL (mg/m³)										
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial / Industrial ¹ D							
TCE	0.02	0.02	0.4	0.08							
1,1,1-TCA	60	60	1200	230							
PCE	2	2	40	8							
cis-1,2-											
dichloroethene	0.08	0.08	2	0.3							
Vinyl chloride	0.03	0.03	0.5	0.1							

Table 1A(2) Interim soil vapour health investigation levels for volatile organic chlorinated compounds

Notes:

- 1. Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7, though secondary school buildings should be assessed using residential 'A/B' for vapour intrusion purposes.
- 2. Interim HILs for VOCCs are conservative soil vapour concentrations that can be adopted for the purpose of screening sites where further investigation is required on a site-specific basis. They are based on the potential for vapour intrusion using an indoor air-to-soil vapour attenuation factor of 0.1 and an outdoor air-to-soil vapour attenuation factor of 0.05.
- 3. Application of the interim HILs is based on a measurement of shallow (to 1 m depth) soil vapour (or deeper where the values are to be applied to a future building with a basement) or sub-slab soil vapour.
- 4. The applicability of the interim HILs needs to be further considered when used for other building types such as homes with a crawl-space and no slab, which may require site-specific assessment.
- 5. Use of the interim HILs requires comparison with data that has been collected using appropriate methods and meets appropriate data quality requirements.
- 6. Oral and dermal exposure should be considered on a site-specific basis where direct contact exposure is likely to occur.

	HSL A & HSL B Low – high density residential				HSL C recreational / open space				HSL D Commercial / Industrial				
CHEMICAL													Soil saturation concentrati on
	0 m to <1 m	1 m to <2 m	2 m to <4m	4 m+	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+	(Csat)
SAND													
Toluene	160	220	310	540	NL	NL	NL	NL	NL	NL	NL	NL	560
Ethylbenzene	55	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	64
Xylenes	40	60	95	170	NL	NL	NL	NL	230	NL	NL	NL	300
Naphthalene	3	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	9
Benzene	0.5	0.5	0.5	0.5	NL	NL	NL	NL	3	3	3	3	360
F1 ⁽⁹⁾	45	70	110	200	NL	NL	NL	NL	260	370	630	NL	950
F2 ⁽¹⁰⁾	110	240	440	NL	NL	NL	NL	NL	NL	NL	NL	NL	560
SILT													
Toluene	390	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	640
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	69
Xylenes	95	210	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	330

Table 1A(3)Soil HSLs for vapour intrusion (mg/kg)

Schedule B 1 - Guideline on Investigation Levels for Soil and Groundwater

	HSL A & HSL B Low – high density residential				HSL C recreational / open space				HSL D Commercial / Industrial				
Naphthalene	4	4 NL NL NL			NL	NL	NL	NL	NL	NL	NL	NL	10
Benzene	0.6	0.7	1	2	NL	NL	NL	NL	4	4	6	10	440
F1 ⁽⁹⁾	40	65	100	190	NL	NL	NL	NL	250	360	590	NL	910
F2 ⁽¹⁰⁾	230	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	570
	CLAY												
Toluene	480	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	630
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	68
Xylenes	110	310	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	330
Naphthalene	5	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	10
Benzene	0.7	1	2	3	NL	NL	NL	NL	4	6	9	20	430
F1 ⁽⁹⁾	50	90	150	290	NL	NL	NL	NL	310	480	NL	NL	850
F2 ⁽¹⁰⁾	280	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	560

Notes:

(1) Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7. HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used,

(2) The key limitations of the HSLs should be referred to prior to application and are presented in Friebel and Nadebaum (2011b and 2011d).

(3) Detailed assumptions in the derivation of the HSLs and information on how to apply the HSLs are presented in Friebel and Nadebaum (2011a and 2011b).

(4) Soil HSLs for vapour inhalation incorporate an adjustment factor of 10 applied to the vapour phase partitioning to reflect the differences observed between theoretical estimates of soil vapour partitioning and field measurements. Refer Friebel & Nadebaum (2011a) for further information.

(5) The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

- (6) The HSLs for TPH C₆-C₁₀ in sandy soil are based on a finite source that depletes in less than seven years, and therefore consideration has been given to use of sub-chronic toxicity values. The >C₈-C₁₀ aliphatic toxicity has been adjusted to represent sub-chronic exposure, resulting in higher HSLs than if based on chronic toxicity. For further information refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).
- (7) The figures in the above table may be multiplied by a factor to account for biodegradation of vapour. A factor of 10 may apply for source depths from 2 m to <4 m or a factor of 100 for source depths of 4 m and deeper. To apply the attenuation factor for vapour degradation, a number of conditions must be satisfied. Firstly the maximum length of the shorter side of the concrete slab and surrounding pavement cannot exceed 15 m, as this would prevent oxygen penetrating to the centre of the slab. Secondly, measurement of oxygen in the subsurface is required to determine the potential for biodegradation. Oxygen must be confirmed to be present at >5% to use these factors.
- (8) For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- (9) To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.
- (10) To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

	Low	L A & HS – high de residentia	nsity	recreati	HSL C onal/ope	n space	Commo				
CHEMICAL	2 m to <4 m	4 m to <8 m	8 m+	2 m to <4 m	4 m to <8 m	8 m+	2 m to <4 m	4 m to <8 m	8 m+	Solubility limit	
SAND											
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61	
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9	
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21	
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17	
Benzene	0.8	0.8	0.9	NL	NL	NL	5	5	5	59	
F1(7)	1	1	1	NL	NL	NL	6	6	7	9.0	
F2 ⁽⁸⁾	1	1	1	NL	NL	NL	NL	NL	NL	3.0	
SILT											
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61	
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9	
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21	
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17	

Table 1A(4)Groundwater HSLs for vapour intrusion (mg/L)

	HSL A & HSL B Low – high density residential		HSL C recreational / open space			HSL D Commercial / industrial				
Benzene	4	5	5	NL	NL	NL	30	30	30	59
F1(7)	6	6	6	NL	NL	NL	NL	NL	NL	9.0
F2 ⁽⁸⁾	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.0
CLAY										
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17
Benzene	5	5	5	NL	NL	NL	30	30	35	59
F1(7)	NL	NL	NL	NL	NL	NL	NL	NL	NL	9.0
F2 ⁽⁸⁾	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.0

Notes:

(1) Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7. HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used,

- (2) The key limitations of the HSLs are presented in Friebel and Nadebaum (2011d) and should be referred to prior to application.
- (3) Detailed assumptions in the derivation of the HSLs and information on the application of the HSLs are presented in Friebel and Nadebaum (2011a and 2011b).
- (4) The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.
- (5) The figures in the above table may be multiplied by a factor to account for biodegradation of vapour. A factor of 10 may apply for source depths from 2 m to <4 m or a factor of 100 for source depths of 4 m and deeper. To apply the attenuation factor for vapour degradation, a number of conditions must be satisfied. Firstly, the maximum length of the shorter side of the concrete slab and surrounding pavement cannot exceed 15 m, as this would prevent oxygen penetrating to the centre of the slab. Secondly, measurement of oxygen in the subsurface is required to determine the potential for biodegradation. Oxygen must be confirmed to be present at >5% to use these factors.

- (6) For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- (7) To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.
- (8) To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

		HSL A & HSL B Low – high density residential						HSL C					HSL D		
	L	ow – hig	<mark>,h densit</mark>	y residen	tial	recreational / open space				Commercial / Industrial					
CHEMICAL	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m to <8 m	8 m+	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m to <8 m	8 m+	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m to <8 m	8 m+
	SAND														
Toluene	1300	3800	7300	15 000	29 000	NL	NL	NL	NL	NL	4800	16 000	39 000	84 000	NL
Ethylbenzene	330	1100	2200	4300	8700	NL	NL	NL	NL	NL	1300	4600	11 000	25 000	53 000
Xylenes	220	750	1500	3000	6100	NL	NL	NL	NL	NL	840	3,200	8000	18 000	37 000
Naphthalene	0.8	3	6	10	25	410	NL	NL	NL	NL	3	15	35	75	150
Benzene	1	3	6	10	20	360	2400	4700	9500	19 000	4	10	30	65	130
F1 ⁽⁸⁾	180	640	1,300	2600	5300	86 000	NL	NL	NL	NL	680	2800	7000	15 000	32 000
F2 ⁽⁹⁾	130	560	1200	2400	4800	NL	NL	NL	NL	NL	500	2400	NL	NL	NL
							SILT	•							
Toluene	1400	14 000	32 000	69 000	140 000	NL	NL	NL	NL	NL	5700	63 000	NL	NL	NL
Ethylbenzene	380	4200	9700	21 000	43 000	NL	NL	NL	NL	NL	1500	19 000	54 000	NL	NL
Xylenes	260	2900	6800	15 000	30 000	NL	NL	NL	NL	NL	1000	13 000	38 000	NL	NL
Naphthalene	0.9	10	25	60	120	NL	NL	NL	NL	NL	4	50	150	350	750
Benzene	1	10	25	55	110	1800	12 000	24 000	48 000	97 000	4	50	140	320	670
F1 ⁽⁸⁾	210	2600	6000	13 000	26 000	NL	NL	NL	NL	NL	850	11 000	33 000	77 000	160 000

Table	1A(5)	Soil vapour	HSLs for vapour	intrusion (mg/m ³)
	• • •	1	1	

	HSL A & HSL B Low – high density residential				HSL C recreational / open space				HSL D Commercial / Industrial						
F2 ⁽⁹⁾	160	2300	5400	NL	NL	NL	NL	NL	NL	NL	670	NL	NL	NL	NL
	CLAY														
Toluene	1600	23 000	53 000	110 000	NL	NL	NL	NL	NL	NL	6500	100 000	NL	NL	NL
Ethylbenzene	420	6800	16 000	35 000	NL	NL	NL	NL	NL	NL	1800	31 000	NL	NL	NL
Xylenes	280	4800	11 000	24 000	50 000	NL	NL	NL	NL	NL	1200	21 000	NL	NL	NL
Naphthalene	1	20	45	95	200	NL	NL	NL	NL	NL	4	85	240	560	1200
Benzene	1	15	40	90	180	3000	20 000	40 000	81 000	160 000	5	80	230	530	1100
F1(8)	230	4200	9900	21 000	44 000	NL	NL	NL	NL	NL	1000	19 000	55 000	130 000	270 000
F2 ⁽⁹⁾	180	3,800	NL	NL	NL	NL	NL	NL	NL	NL	800	NL	NL	NL	NL

1. Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7. HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used,

2. The key limitations of the HSLs should be referred to prior to application and are presented in Friebel and Nadebaum (2011b and 2011d).

3. Detailed assumptions in the derivation of the HSLs and information on how to apply the HSLs are presented in Friebel and Nadebaum (2011a and 2011b).

4. The maximum possible soil vapour concentrations have been calculated based on vapour pressures of the pure chemicals. Where soil vapour HSLs exceed these values a soil-specific source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

5. Soil vapour HSLs should be compared with measurements taken as laterally close as possible to the soil or groundwater sources of vapour (i.e. within or above vapour sources). Consideration is required of where the sample is taken, the current condition of the site and the likely future condition of the site. Shallow gas measurements in open space (less than 1 m below ground surface) may be subject to influences of weather conditions and moisture.

- 6. The figures in the above table may be multiplied by a factor to account for biodegradation of vapour. A factor of 10 may apply for source depths from 2 m to <4 m or a factor of 100 for source depths of 4 m and deeper. To apply the attenuation factor for vapour degradation, a number of conditions must be satisfied. Firstly, the maximum length of the shorter side of the concrete slab and surrounding pavement cannot exceed 15 m, as this would prevent oxygen penetrating to the centre of the slab. Secondly, measurement of oxygen in the subsurface is required to determine the potential for biodegradation. Oxygen must be confirmed to be present at >5% to use these factors.
- 7. For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- 8. To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.

9. To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

	Zn added c	ontaminant li	imits (ACL, n	ng added com	taminant/kg)	
		Areas of	ecological si	gnificance		
pH^a			CEC ^b	(cmol _c /kg)		
	5	10	20	30	40	60
4.0	15	20	20	20	20	20
4.5	20	25	25	25	25	25
5.0	30	40	40	40	40	40
5.5	40	60	60	60	60	60
6.0	50	90	90	90	90	90
6.5	50	90	130	130	130	130
7.0	50	90	150	190	190	190
7.5	50	90	150	210	260	280
		Urban resi	dential/public	c open space ¹		
pH^a			CEC ^b	(cmol _c /kg)		
	5	10	20	30	40	60
4.0	70	85	85	85	85	85
4.5	100	120	120	120	120	120
5.0	130	180	180	180	180	180
5.5	180	270	270	270	270	270
6.0	230	400	400	400	400	400
6.5	230	400	590	590	590	590
7.0	230	400	700	880	880	880
7.5	230	400	700	960	1200	1300
		Con	nmercial/indu	ıstrial		
pH^a			CEC ^b	(cmol _c /kg)		
	5	10	20	30	40	60
4.0	110	130	130	130	130	130
4.5	150	190	190	190	190	190
5.0	210	290	290	290	290	290
5.5	280	420	420	420	420	420
6.0	360	620	620	620	620	620
6.5	360	620	920	920	920	920
7.0	360	620	1100	1400	1400	1400
7.5	360	620	1100	1500	1900	2000

Table 1B(1) Soil-specific added contaminant limits for aged zinc in soil

1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

2. Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

3. The EIL is calculated from summing the ACL and the ABC.

a = pH measured using the CaCl₂ method (Rayment & Higginson 1992).

b = CEC measured using the silver thiourea method (Chabra et al. 1972).

	Cu added conta	minant limits (A	CL, mg added o	contaminant/kg)					
	Areas of ecological significance								
	CEC (cmol _c /kg) ^a based								
5	10	20	30	40	60				
30	65	70	70	75	80				
		pH ^b b	pased						
4.5	5.5	6	6.5	7.5	8.0				
20	45	65	90	190	270				
	Uı	rban residential/	public open spa	ce ¹					
	CEC (cmol _c /kg) ^a based								
5	10	20	30	40	60				
95	190	210	220	220	230				
		pH ^b b	pased		1				
4.5	5.5	6	6.5	7.5	8.0				
60	130	190	280	560	800				
		Commercia	l/industrial						
		CEC (cmol	c/kg) ^a based		1				
5	10	20	30	40	60				
140	280	300	320	330	340				
		pH ^b b	pased						
4.5	5.5	6	6.5	7.5	8.0				
85	190	280	400	830	1200				

Table 1B(2) Soil-specific added contaminant limits for aged copper in soils

Notes:

1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

2. The lower of the CEC or the pH-based ACLs for the land use and soil conditions is the ACL to be used.

3. Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

4. The EIL is calculated from summing the ACL and the ABC.

a = CEC measured using the silver thiourea method (Chabra et al. 1972).

b = pH measured using the CaCl₂ method (Rayment & Higginson 1992).

CHEMICAL	Clay content	Added contamin	ant limits (mg added for various land u	- 8/	
	(% clay)	Areas of ecological significance	Urban residential and public open space	Commercial and industrial	
	1	60	190	310	
Chromium	2.5	80	250	420	
III	5	100	320	530	
	≥10	130	400	660	
	CECª (cmol₀/kg)	Areas of ecological significance	Urban residential and public open space ¹	Commercial and industrial	
	5	5	30	55	
Nickel	10	30	170	290	
	20	45	270	460	
	30	60	350	600	
	40	70	420	730	
	60	95	560	960	

Table 1B(3) Soil-specific added contaminant limits for aged chromium III and nickel in soil

Notes:

1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

- 2. Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
- 3. The EIL is calculated from summing the ACL and the ABC.
- a = CEC measured using the silver thiourea method (Chabra et al. 1972).

Table 1B(4)Generic added contaminant limits for lead in soils irrespective of theirphysicochemical properties

	Pb added contaminant limit (ACL, mg added contaminant/kg) for various land uses					
CHEMICAL	Areas of ecological significance	Urban residential and public open space ¹	Commercial and industrial			
Lead	470	1100	1800			

Notes:

1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

2. Aged values are applicable to lead contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

3. The EIL is calculated from summing the ACL and the ABC.

Table 1B(5)	Generic EILs for aged As, fresh DDT and fresh naphthalene in soils
irrespective o	f their physicochemical properties

	Ecological Investigation Levels (mg total contaminant/kg)						
CHEMICAL	Areas of ecological significance	Urban residential and public open space ¹	Commercial and industrial				
Arsenic ²	40	100	160				
DDT ³	3	180	640				
Naphthalene	10	170	370				

Notes:

1. Urban residential/public open space is broadly equivalent to the HIL-A, HIL-B and HIL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

2. Aged values are applicable to arsenic contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

3. Insufficient data was available to calculate aged values for DDT and naphthalene, consequently the values for fresh contamination should be used.

4. Insufficient data was available to calculate ACLs for As, DDT and naphthalene. The EIL should be taken directly from Table 1B(5).

		, , , , , , , , , , , , , , , , , , , ,						
CHEMICAL	Soil		ESLs (mg/kg dry soil)					
	texture	Areas of ecological significance	Urban residential and public open space	Commercial and industrial				
F1 C ₆ -C ₁₀		125*	180*	215*				
F2 >C ₁₀ -C ₁₆	Coarse/ Fine	25*	120*	170*				
F3 >C ₁₆ -C ₃₄	Coarse	-	300	1700				
	Fine	-	1300	2500				
F4 >C ₃₄ -C ₄₀	Coarse	-	2800	3300				
	Fine	-	5600	6600				
Benzene	Coarse	10	50	75				
	Fine	10	65	95				
Toluene	Coarse	10	85	135				
	Fine	65	105	135				
Ethylbenzene	Coarse	1.5	70	165				
	Fine	40	125	185				
Xylenes	Coarse	10	105	180				
	Fine	1.6	45	95				
Benzo(a)pyrene	Coarse	0.7	0.7	0.7				
	Fine	0.7	0.7	0.7				

Table 1B(6)ESLs for TPH fractions F1 - F4, BTEX and benzo(a)pyrene in soil

Notes:

(1) ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

(2) '-' indicates that insufficient data was available to derive a value.

(3) To obtain F1, subtract the sum of BTEX concentrations from C_6 - C_{10} fraction and subtract naphthalene from > C_{10} - C_{16} to obtain F2.

TPH fraction	Soil texture	Management Limits ¹ (mg/kg dry soil)				
		Residential, parkland and public open space	Commercial and industrial			
F1 ² C ₆ - C ₁₀	Coarse	700	700			
	Fine	800	800			
F2 ² >C ₁₀ -C ₁₆	Coarse	1000	1000			
	Fine	1000	1000			
F3 >C ₁₆ -C ₃₄	Coarse	2500	3500			
	Fine	3500	5000			
F4 >C ₃₄ -C ₄₀	Coarse	10 000	10 000			
	Fine	10 000	10 000			

Table 1 B(7) Management Limits for TPH fractions F1–F4 in soil

¹ Management limits are applied after consideration of relevant ESLs and HSLs

² Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

	Ground	lwater Investigati	ion Levels
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B
	(µg/L)	(µg/L)	(mg/L)
Meta	als and Metalloids	6	
Aluminium, Al pH>6.5	55	-	-
Antimony	-	-	0.003
Arsenic	24 as As(III) 13 as As(V)	-	0.01
Barium	-	-	2
Beryllium	-	-	0.06
Boron	370 ^C	-	4
Cadmium H	0.2	0.7 ^D	0.002
Chromium, Cr (III) H	-	27	-
Chromium, Cr (VI)	1 ^C	4.4	0.05
Cobalt	-	1	-
Copper H	1.4	1.3	2
Iron, (Total)	-	-	-
Lead H	3.4	4.4	0.01
Manganese	1900 ^C	-	0.5
Mercury (Total)	0.06 ^D	0.1 ^D	0.001
Molybdenum	-	-	0.05
Nickel H	11	7	0.02
Selenium (Total)	5 ^D	-	0.01
Silver	0.05	1.4	0.1
Tributyl tin (as Sn)	-	0.006 ^C	-
Tributyl tin oxide	-	-	0.001
Uranium	-	-	0.017
Vanadium	-	100	-
Zinc H	8 ^C	15 ^C	-
Non-1	metallic Inorganic	2S	
Ammonia ^E (as NH ₃ -N at pH 8)	900 ^c	910	-
Bromate	-	-	0.02
Chloride	-	-	-
Cyanide (as un-ionised Cn)	7	4	0.08
Fluoride	-	-	1.5
Hydrogen sulphide (un-ionised H ₂ S measured as S)	1	-	-
Iodide	-	-	0.5

 Table 1C
 Groundwater Investigation Levels (GILs)

	Groundwater Investigation Levels					
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B			
	(µg/L)	(µg/L)	(mg/L)			
Nitrate (as NO ₃)	refer to guideline	refer to guideline	50			
Nitrite (as NO ₂)	refer to guideline	refer to guideline	3			
Nitrogen	refer to guideline	refer to guideline	-			
Phosphorus	refer to guideline	refer to guideline	-			
Sulphate (as SO ₄)	-	-	500			
Organic al	chohols/other org	ganics				
Ethanol	1400	-	-			
Ethylenediamine tetra-acetic acid (EDTA)	-	-	0.25			
Formaldehyde	-	-	0.5			
Nitrilotriacetic acid	-	-	0.2			
	Anilines					
Aniline	8	-	-			
2,4-Dichloroaniline	7	-	-			
3,4-Dichloroaniline	3	150	-			
Chlo	orinated Alkanes					
Dichloromethane	-	-	0.004			
Trichloromethane (chloroform)	-	-	0.003			
Trihalomethanes (total)	-	-	0.25			
Tetrachloromethane (carbon tetrachloride)	-	-	0.003			
1,2-Dichloroethane	-	-	0.003			
1,1,2-Trichloroethane	6500	1900	-			
Hexachloroethane	290 ^D	290 ^{D} -				
Chlo	orinated Alkenes					
Chloroethene (vinyl chloride)	-	-	0.0003			
1,1-Dichloroethene	-	-	0.03			
1,2-Dichoroethene	-	-	0.06			
Tetrachloroethene (PCE) (Perchloroethene)	-	-	0.05			
Chlo	rinated Benzenes					
Chlorobenzene	-	-	0.3			
1,2- Dichlorobenzene	160	-	1.5			
1,3- Dichlorobenzene	260	-	-			

Groundwater Investigation Levels					
Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B			
(µg/L)	(µg/L)	(mg/L)			
60	-	0.04			
3 ^D	-	0.03			
85 ^D	20 ^{D}	for individual or			
-	-	total trichlorobenzenes			
ated Biphenyls ((PCBs)				
0.3 ^D	-	-			
0.01 ^D	-	-			
orinated Compo	unds				
-	-	0.1			
-	-	0.0007			
-	-	3			
Aromatic Hydroc	arbons				
950	500 ^c	0.001			
-	-	0.8			
-	-	0.3			
350 (as o- xylene) 200 (as p- xylene)	-	0.6			
-	_	0.03			
natic Hydrocarbo	ons (PAHs)				
_		-			
-	_	0.00001			
Phenols					
320	400	-			
340 ^c	-	0.3			
220	-	_			
120	-	0.2			
3 ^D	-	0.02			
10 ^D	-	-			
3.6 ^D	11 ^D	0.01			
45	-	-			
Phthalates					
3700	-	-			
1000	-	-			
10 ^D	-	-			
10					
	Fresh Waters ^A (µg/L) 60 3 ^D 85 ^D - ated Biphenyls (0.3 ^D 0.01 ^D orinated Compor - - Aromatic Hydrood 950 - 350 (as o-xylene) 200 (as p-xylene) 201 (ab p-xylene) 320 340 ^C 220 120 3 ^D 10 ^D 3.6 ^D 45 Phthalates 3700 1000	Fresh Waters ^A Marine Waters ^A (μg/L) (μg/L) 60 - 3 ^D - 85 ^D 20 ^D ated Biphenyls PCBs) 0.3 ^D - ated Biphenyls - 0.3 ^D - 0.01 ^D - orinated Compounds - 0.01 ^D - - - 950 500 ^C - - 950 500 ^C - - 350 (as o- xylene) - 200 (as p- xylene) - 200 (as p- xylene) - 200 (as p- xylene) - 16 50 ^C - - 320 400 340 ^C - 120 - 320 400 340 ^C - 320 400 340 ^C - 30 ^D - 10 ^D			

Schedule B 1 - Guideline on Investigation Levels for Soil and Groundwater

	Ground	Groundwater Investigation Levels					
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B				
	(µg/L)	(µg/L)	(mg/L)				
	Pesticides						
Acephate	-	-	0.008				
Aldicarb	-	-	0.004				
Aldrin plus Dieldrin	-	-	0.0003				
Ametryn	-	-	0.07				
Amitraz	-	-	0.009				
Amitrole	-	-	0.0009				
Asulam	-	-	0.07				
Atrazine	13	-	0.02				
Azinphos-methyl	-	-	0.03				
Benomyl	-	-	0.09				
Bentazone	-	-	0.4				
Bioresmethrin	-	-	0.1				
Bromacil	-	-	0.4				
Bromoxynil	-	-	0.01				
Captan	-	-	0.4				
Carbaryl	-	-	0.03				
Carbendazim (Thiophanate-methyl)	-	-	0.09				
Carbofuran	0.06	-	0.01				
Carboxin	-	-	0.3				
Carfentrazone-ethyl	-	-	0.1				
Chlorantraniliprole	-	-	6				
Chlordane	0.03 ^D	-	0.002				
Chlorfenvinphos	-	-	0.002				
Chlorothalonil	-	-	0.05				
Chlorpyrifos	0.01 ^D	0.009 ^D	0.01				
Chlorsulfuron	-	-	0.2				
Clopyralid	-	-	2				
Cyfluthrin, Beta-cyfluthrin	-	-	0.05				
Cypermethrin isomers	-	-	0.2				
Cyprodinil	-	-	0.09				
1,3-Dichloropropene	-	-	0.1				
2,2-DPA	-	-	0.5				
2,4-D [2,4-dichlorophenoxy acetic acid]	280	-	0.03				
DDT	0.006 ^D	-	0.009				
Deltramethrin	-	-	0.04				

	Ground	Groundwater Investigation Levels						
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B					
	(µg/L)	(µg/L)	(mg/L)					
Diazinon	0.01	-	0.004					
Dicamba	-	-	0.1					
Dichloroprop	-	-	0.1					
Dichlorvos	-	-	0.005					
Dicofol	-	-	0.004					
Diclofop-methyl	-	-	0.005					
Dieldrin plus Aldrin	-	-	0.0003					
Diflubenzuron	-	-	0.07					
Dimethoate	0.15	-	0.007					
Diquat	1.4	-	0.007					
Disulfoton	-	-	0.004					
Diuron	-	-	0.02					
Endosulfan	0.03 ^D	0.005 ^D	0.02					
Endothal	-	-	0.1					
Endrin	0.01 ^D	0.004 ^D	-					
EPTC	-	-	0.3					
Esfenvalerate	-	-	0.03					
Ethion	-	-	0.004					
Ethoprophos	-	-	0.001					
Etridiazole	-	-	0.1					
Fenamiphos	-	-	0.0005					
Fenarimol	-	-	0.04					
Fenitrothion	0.2	-	0.007					
Fenthion	-	-	0.007					
Fenvalerate	-	-	0.06					
Fipronil	-	-	0.0007					
Flamprop-methyl	-	-	0.004					
Fluometuron	-	-	0.07					
Fluproponate	-	-	0.009					
Glyphosate	370	-	1					
Haloxyfop	-	-	0.001					
Heptachlor	0.01 ^D	-	-					
Heptachlor epoxide	-	-	0.0003					
Hexazinone	-	-	0.4					
Imazapyr	-	-	9					
Iprodione	-	-	0.1					
Lindane (y-HCH)	0.2	-	0.01					

Schedule B 1 - Guideline on Investigation Levels for Soil and Groundwater

	Ground	Groundwater Investigation Levels					
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B				
	(µg/L)	(µg/L)	(mg/L)				
Malathion	0.05	-	0.07				
Mancozeb (as ETU, ethylene thiourea)	-	-	0.009				
MCPA	-	-	0.04				
Metaldehyde	-	-	0.02				
Metham (as methylisothiocyanate, MITC)	-	-	0.001				
Methidathion	-	-	0.006				
Methiocarb	-	-	0.007				
Methomyl	3.5		0.02				
Methyl bromide		-	0.001				
Metiram (as ETU, ethylene thiourea)	-	-	0.009				
Metolachlor/s-Metolachlor	-	-	0.30				
Metribuzin	-	-	0.07				
Metsulfuron-methyl	-	-	0.04				
Mevinphos	-	-	0.006				
Molinate	3.4	-	0.004				
Napropamide	-	-	0.4				
Nicarbazin	-	-	1				
Norflurazon	-	-	0.05				
Omethoate	-	-	0.001				
Oryzalin	-	-	0.4				
Oxamyl	-	-	0.007				
Paraquat	-	-	0.02				
Parathion	0.004 ^C	-	0.02				
Parathion methyl	-	-	0.0007				
Pebulate	-	-	0.03				
Pendimethalin	-	-	0.4				
Pentachlorophenol	-	-	0.01				
Permethrin	-	-	0.2				
Picloram	-	-	0.30				
Piperonyl butoxide	-	-	0.6				
Pirimicarb	-	-	0.007				
Pirimiphos methyl	-	-	0.09				
Polihexanide	-	-	0.7				
Profenofos	_	-	0.0003				

	Ground	Groundwater Investigation Levels					
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B				
	(µg/L)	(µg/L)	(mg/L)				
Propachlor	-	-	0.07				
Propanil	-	-	0.7				
Propargite	-	-	0.007				
Proparzine	-	-	0.05				
Propiconazole	-	-	0.1				
Propyzamide	-	-	0.07				
Pyrasulfatole	-	-	0.04				
Pyrazophos	-	-	0.02				
Pyroxsulam	-	-	4				
Quintozene	-	-	0.03				
Simazine	3.2	-	0.02				
Spirotetramat	-	-	0.2				
Sulprofos	-	-	0.01				
2,4,5-T	36	-	0.1				
Tebuthiuron	2.2	-	-				
Temephos	-	0.05 ^D	0.4				
Terbacil	-	-	0.2				
Terbufos	-	-	0.0009				
Terbuthylazine	-	-	0.01				
Terbutryn	-	-	0.4				
Thiobencarb	2.8	-	0.04				
Thiometon	-	-	0.004				
Thiram	0.01	-	0.007				
Toltrazuril	-	-	0.004				
Toxafene	0.1 ^D	-	-				
Triadimefon	-	-	0.09				
Trichlorfon	-	-	0.007				
Triclopyr	-	-	0.02				
Trifluralin	2.6 ^D	-	0.09				
Vernolate	-	-	0.04				
	Surfactants						
Linear alkylbenzene sulfonates (LAS)	280	-	-				
Alcohol ethoxylated sulfate (AES)	650	-	-				
Alcohol ethoxylated surfactants (AE)	140	-	-				

	Groundwater Investigation Levels				
Substance	Fresh Waters [∧]	Marine Waters ^A	Drinking Water ^B		
	(µg/L)	(µg/L)	(mg/L)		

- A Investigation levels apply to typical slightly-moderately disturbed systems. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions.
- B Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011).
- C Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.
- D Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.
- E For changes in GIL with pH refer to ANZECC & ARMCANZ (2000) for further guidance.
- H Values have been calculated using a hardness of 30 mg/L CaCO₃ refer to ANZECC & ARMCANZ (2000) for further guidance on recalculating for site-specific hardness.

APPENDIX F: SUMMARY OF RESULTS

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 54 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

CONTAMINATION | REMEDIATION | HAZMAT | ASBESTOS

TABLE A SCHEDULE OF LABORATORY TESTING

Analyte	/ Analyte Group	TYPE	SAMPLING DATE	DUPLICATE	MET-8	TPH & BTEX	РАН	ОСР	PCB	PHENOLS	ASBESTOS
BH1	0.2-0.3	F	11.12.2023	D1	~	~	>	>	~	>	~
BH2	0.1-0.2	F	11.12.2023		~	~	>	>	~	>	~
BH3	0.1-0.2	F	11.12.2023		~	~	>	>	~	>	~
BH4	0.1-0.2	F	11.12.2023		~	>	>	>	>	>	~
BH5	0.0-0.1	F	11.12.2023		*	>	>	>	<	>	•
BH6	0.1-0.2	F	11.12.2023		~	>	>	>	>	>	~
BH7	0.2-0.3	F	11.12.2023		>	>	>	>	>	>	>
BH8	0.0-0.1	F	11.12.2023		>	>	>	>	>	>	>

Notes

MET-8: arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc

 OCP :
 Organochlorine Pesticides

 OPP :
 Organophosphorus Pesticides

 PCB :
 Polychlorinated Biphenyls

VOC: Volatile Organic Compounds

PAH: Polycyclic Aromatic Hydrocarbons

TPH: Total Petroleum Hydrcarbons

BTEX: Benzene, Toluene, Ethyl Benzene, Xylene

F,T,N: Fill, Topsoil, Natural

TABLE B
HEAVY METALS TEST RESULTS FOR HILS & ESLS

		Analyte	HEAVY METALS (mg/kg)							
			ARSENIC	CADMIUM	CHROMIUM (VI)	COPPER	MERCURY	NICKEL	.EAD ⁸	ZINC
Sample Location	Sample Date	Depth (m)	`		Ŭ		_			Z
BH1	11.12.2023	0.2-0.3	8	<1	18	20	<0.1	9	56	114
BH2	11.12.2023	0.1-0.2	18	<1	37	14	<0.1	5	26	39
BH3	11.12.2023	0.1-0.2	<5	<1	8	9	<0.1	5	37	70
BH4	11.12.2023	0.1-0.2	<5	<1	12	15	<0.1	7	81	96
BH5	11.12.2023	0.0-0.1	11	<1	28	17	<0.1	7	56	90
BH6	11.12.2023	0.1-0.2	<5	<1	12	30	<0.1	8	56	72
BH7	11.12.2023	0.2-0.3	8	<1	20	18	<0.1	8	38	178
BH8	11.12.2023	0.0-0.1	7	<1	18	29	<0.1	10	90	196
Practical Quantitation	on Limits (PQL)		5	1	2	5	0.1	2	5	5
	NMENT PROTECTION n Levels (HIL) - Table	-) 100	20	100	6000	40 ^e / 10 ^t	400	300	7400
HIL B ^b			500	150	500	30,000	120 ^e / 30 ^f	1200	1200	60,000
HIL C ^c			300	90	300	17,000	80 ^e / 13 ^f	1200	600	30,000
HIL D ^d			3000	900	3600	240,000	730 ^e / 180 ^f	6000	1500	400,000
Areas of ecological	nd public open space		40 ^h 100 ^h 160 ^h							
Notes	a:	Residential with						nd vegetab	le intake (no poultry)
	b:	also includes chi Residential with yard space such	n minimal o	pportunitie	s for soil a	ccess; includ		vith fully ar	nd perman	ently paved
	c:	Public open spa This does not in site-specific asse	ice such as clude unde	parks, play veloped pu	rgrounds, p blic open s	olaying fields pace where				-
	d:	Commercial/ind	ustrial, inclu	udes premi	ses such as	shops, office	es, factories an	d industrial	sites	
	e:	Elemental merce	ury: HIL doe	es not addre	ess elemen	tal mercury.	A site-specific	assessmen	t should be	considered
	f:	Methyl mercury source. It may b	emental mercury is present, or suspected to be present, thyl mercury: assessment of methyl mercury should only occur where there is evidence of its potential rce. It may be associated with inorganic mercury and anaerobic microorganism activity in aquatic ironments. In addition the reliability and quality of sampling/analysis should be considered.							
	g:	Lead: HIL is base oral bioavailabi considered whe	lity has be re appropria	en conside ate.	ered. Site-	specific bioa	wailability ma	y be impo	ortant and	should be
	h:	Aged values are contamination r			ontaminat	ion present i	n soil for at lea	st two year	s. For fresh	ı
	i:	Urban residentia scenarios in Tab	al / public o	pen space		-		-B and HIL	-C land use	2

$\overline{}$	Analyte			(mg/kg)			PAH (mg/kg)		
Sample Location	Sample Date	Depth (m)	F1ª	F2 ^b	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	NAPHTHALENE
BH1	11.12.2023	0.2-0.3	<10	<50	<0.2	<0.5	<0.5	<0.5	<0.5
BH2	11.12.2023	0.1-0.2	<10	<50	<0.2	<0.5	<0.5	<0.5	<0.5
BH3	11.12.2023	0.1-0.2	<10	<50	<0.2	<0.5	<0.5	<0.5	<0.5
BH4	11.12.2023	0.1-0.2	<10	<50	<0.2	<0.5	<0.5	<0.5	<0.5
BH5	11.12.2023	0.0-0.1	<10	<50	<0.2	<0.5	<0.5	<0.5	<0.5
BH6	11.12.2023	0.1-0.2	<10	<50	<0.2	<0.5	<0.5	<0.5	<0.5
BH7	11.12.2023	0.2-0.3	<10	<50	<0.2	<0.5	<0.5	<0.5	<0.5
BH8	11.12.2023	0.0-0.1	<10	<50	<0.2	<0.5	<0.5	<0.5	<0.5
Practical Quantitation	Limits (PQL)		10	50	0.2	0.5	0.5	0.5	0.5
NATIONAL ENVIRONM	MENT PROTECTION	MEASURE (2013)							
Health Screening Leve	els (HSL) - Table 1A	(3)							
HSL A & HSL B: Low-h	igh density resident	ial							
Source depth - Om to	<1m		50	280	0.7	480	NL	110	5
Source depth - 1m to	<2m		90	NL	1	NL	NL	310	NL
Source depth - 2m to	<4m		150	NL	2	NL	NL	NL	NL
Source depth - 4m +			290	NL	3	NL	NL	NL	NL
HSL C: recreational / o	open space								
Source depth - 0m to	<1m		NL	NL	NL	NL	NL	NL	NL
Source depth - 1m to	<2m		NL	NL	NL	NL	NL	NL	NL
Source depth - 2m to	<4m		NL	NL	NL	NL	NL	NL	NL
Source depth - 4m +			NL	NL	NL	NL	NL	NL	NL
HSL D: Commercial /	Industrial								
Source depth - 0m to <1m		310	NL	4	NL	NL	NL	NL	
Source depth - 1m to <2m		480	NL	6	NL	NL	NL	NL	
Source depth - 2m to <4m		NL	NL	9	NL	NL	NL	NL	
Source depth - 4m +			NL	NL	20	NL	NL	NL	NL
Notes a	a:	To obtain F1 sub	tract the	sum of BTE	X concent	trations fr	om the C ₆ -	C ₁₀ fraction	ו ו.

TABLE C TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND NAPHTHALENE TEST RESULTS FOR HSLs IN CLAY

b: NL: 10 obtain F1 subtract the sum of BTEX concentrations from the C_{6} - C_{10} fract To obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction.

Not Limiting

TABLE D
TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND BENZO(a)PYRENE TEST RESULTS
ESLs FOR FINE GRAINED SOIL TEXTURE

$\overline{}$		Analyte		TRH	(mg/kg)			BTEX	(mg/kg)		PAH (mg/kg)
Sample Location	Sample Date	Depth (m)	F1 (C ₆ -C ₁₀) ^a	F2 (>C ₁₀ -C ₁₆) ^b	F3 (C ₁₆ -C ₃₄)	F4 (C ₃₄ -C ₄₀)	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	BENZO(a)PYRENE
BH1	11.12.2023	0.2-0.3	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5
BH2	11.12.2023	0.1-0.2	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5
BH3	11.12.2023	0.1-0.2	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5
BH4	11.12.2023	0.1-0.2	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5
BH5	11.12.2023	0.0-0.1	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5
BH6	11.12.2023	0.1-0.2	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5
BH7	11.12.2023	0.2-0.3	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5
BH8	11.12.2023	0.0-0.1	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5
Practical Quantitatio	n Limits (PQL)		10	50	100	100	0.2	0.5	0.5	5	0.5
NATIONAL ENVIRON	IMENT PROTECTIO	ON MEASURE (20)13)								
Ecological Screening	Levels (ESL) - Tab	le 1B (6)	_	_							
Areas of ecological s	significance		125	25	-	-	10	65	40	1.6	0.7
Urban residential an	id public open space	ce	180*	120*	1300	5600	65	105	125	45	0.7
Commercial and ind	ustrial		215 [*]	170 [*]	2500	6600	95	135	185	95	0.7

Notes a: To obtain F1 subtract the sum of BTEX concentrations from the C_6-C_{10} fraction.

b:

*:

"-":

To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

"-" indicates that insufficient data was available to derive a value.

TABLE E
TOTAL RECOVERABLE HYDROCARBONS (TRH) TEST RESULTS
MANAGEMENT LIMITS FOR FINE GRAINED SOIL TEXTURE

		Analyte		TRH (r	ng/kg)	
			F1 (C ₆ -C ₁₀) ^a	F2 (>C ₁₀ -C ₁₆) ^a	F3 (C ₁₆ -C ₃₄)	F4 (C ₃₄ -C ₄₀)
Sample Location	Date Sampled	Depth (m)				
BH1	11.12.2023	0.2-0.3	<10	<50	<100	<100
BH2	11.12.2023	0.1-0.2	<10	<50	<100	<100
BH3	11.12.2023	0.1-0.2	<10	<50	<100	<100
BH4	11.12.2023	0.1-0.2	<10	<50	<100	<100
BH5	11.12.2023	0.0-0.1	<10	<50	<100	<100
BH6	11.12.2023	0.1-0.2	<10	<50	<100	<100
BH7	11.12.2023	0.2-0.3	<10	<50	<100	<100
BH8	11.12.2023	0.0-0.1	<10	<50	<100	<100
Practical Quantitatio	n Limits (PQL)		10	50	100	100
NATIONAL ENVIRON	MENT PROTECTION	I MEASURE (2013)				
Management Limits	: - Table 1B (7)					
Residential parkland	l and public open spa	ace	800	1000	3500	10,000
Commercial and ind	lustrial		800	1000	5000	10,000

b:

should not be subtracted from the relevant fractions to obtain F1 and F2.

Management limits are applied after consideration of relevant ESLs and HSLs.

TABLE F

POLYCYCLIC AROMATIC HYDROCARBONS (PAH), ORGANOCHLORINE PESTICIDES (OCP), POLYCHLORINATED BIPHENYLS (PCB) AND PHENOLS TEST RESULTS FOR HILS, EILS & ESLS

PAH (mg/kg) ine Pesticides (mg/kg) cinogenic PAHs BaP TEQ) ^e add **IOXYCHLOR** ALENE CHLOR PAHs + 300 DRIN Ŋ ₿ 8 11.12.2023 <2 0.2-0.3 0.6 <0.5 <0.5 < 0.05 < 0.05 <0.05 <0.05 < 0.05 <0.05 <0.2 <0.1 <0.5 BH1 <0.5 <0.05 BH2 11.12.2023 0.1-0.2 0.6 <0.5 <0.5 <0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 < 0.2 <0.1 <0.5 <2 BH3 11.12.2023 0.1-0.2 0.6 <0.5 <0.5 <0.5 <0.05 < 0.05 <0.05 <0.05 < 0.05 <0.05 <0.05 <0.2 <0.1 <0.5 <2 BH4 11.12.2023 0 1-0 2 0.6 <0.5 <0.5 <05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.2 <0.1 <0.5 <2 <0.5 0.0-0.1 <0.5 <0.05 <0.05 <0.2 <0.5 <2 <0.5 <0.05 <0.05 <0.05 <0.05 <0.1 BH5 0.6 <0.05 11.12.2023 BH6 11.12.2023 0.1-0.2 0.6 <0.5 <0.5 <0.5 < 0.05 <0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <0.2 <0.1 <0.5 <2 <0.5 <0.2 <2 BH7 11.12.2023 0.2-0.3 0.6 < 0.5 < 0.5 < 0.05 < 0.05 < 0.05 <0.05 <0.05 < 0.05 <0.05 <0.1 <0.5 11.12.2023 0.0-0.1 0.6 <0.5 <0.5 <0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.2 <0.1 <0.5 <2 вна 0.5 0.5 0.05 0.05 0.0 0.05 0.05 0.05 0.05 0.2 0.1 0.5 2 ATIONAL ENVIRONMENT PROTECTION MEASURE (2013) lealth Investigation Levels (HIL) - Table 1A (1) HIL A 300 6 270 100 3 240 50 10 6 10 300 3000 1 HIL B 4 400 600 10 90 400 20 10 15 500 45 000 130 400 HILC 340 120 300 400 10 70 20 10 10 40,000 3 HIL D ^d 40 4000 3600 45 530 2000 100 50 80 2500 240,000 660 Ecological Investigation Levels (EIL) - Table 1B (5) 3 ^{8, 1} Areas of ecological significance 10.8 180 ^{g, k} 170 8 Urban residential and public open space 640 ^{g, k} Commercial and industrial 370 8 Ecological Screening Levels (ESL) - Table 1B (6) 0.7 Areas of ecological significance Urban residential and public open space 0.7 0.7 Commercial and industrial Residential with garden/accessible soil (home grown poduce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high rise buildings and apartments. c: Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate.

Urban residential / public open space is broadly equivalent to the HIL-A, HIL-B and HIL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

Total PAHs: HIL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998). The application of the total PAH HIL should consider the presence of carcinogenic PAHs and naphthalene (the most volatile PAH). Carcinogenic PAHs reported in the total PAHs should meet the B(a)P TEQ HIL. Naphthalene reported in the total PAHs should meet

PCBs: HIL relates to non-dioxin-like PCBs only. Where a PCB source is known, or suspected, to be present at a site, a site, asite specific assessment of exposure to all PCBs (including dioxin-like PCBs)

PAH species

Benzo(g,h,i)perylene

Chrysene

Dibenz(a h)anthracene

Indeno(1,2,3-c,d)pyrene

TEF

0.1

1

0.1

0.1

For coarse and fine grained texture soils.

PAH species

nzo(a)anthrac

o(b+i)fluorant

should be undertaken. For DDT only

Benzo(a)pyrer

Benzo(k)fluora

e

g: h:

j:

Exposite is nowe and write a steeper. Assessment may be into appropriate. Commercial/industrial, includes premises such as shops, offices, factories and industrial sites Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

Where the B(a)P occurs in bitumen fragments it is relatively immobile and does not represent a significant health risk.

d

0.01

0.01

1

0.1

Insufficient data was available to calculate aged values for DDT and naphthalene, consequently the values for fresh contamination should be used.

TABLE G ASBESTOS TEST RESULTS

		Analyte	Field Observations*	Laboratory Results Asbestos Type Present / Absent	Laboratory Results Asbestos %w/w
Sample Location	Sample Date	Depth (m)			
BH1	11.12.2023	0.2-0.3	No visible ACM fragments observed	No Asbestos detected	<0.001%
BH2	11.12.2023	0.1-0.2	No visible ACM fragments observed	No Asbestos detected	<0.001%
BH3	11.12.2023	0.1-0.2	No visible ACM fragments observed	No Asbestos detected	<0.001%
BH4	11.12.2023	0.1-0.2	No visible ACM fragments observed	No Asbestos detected	<0.001%
BH5	11.12.2023	0.0-0.1	No visible ACM fragments observed	No Asbestos detected	<0.001%
BH6	11.12.2023	0.1-0.2	No visible ACM fragments observed	No Asbestos detected	<0.001%
BH7	11.12.2023	0.2-0.3	No visible ACM fragments observed	No Asbestos detected	<0.001%
BH8	11.12.2023	0.0-0.1	No visible ACM fragments observed	No Asbestos detected	<0.001%
D1 (BH1)	11.12.2023	0.2-0.3	No visible ACM fragments observed	No Asbestos detected	<0.001%
WA Guidelines f	or the Assessme	nt, Remediati	on and Management of Asbestos - Contam	inated Sites in Western Australia - May 2009	
National Environ	ment Protection	n (Assessment	of Site Contamination) Measure 2013 Sch	edule B1	
%w/w asbestos for	FA and AF				0.001%
%w/w asbestos for	ACM - Residential	use, childcare c	entres, preschools etc.		0.01%
%w/w asbestos for	ACM - Residential,	minimal soil ac	cess (fully sealed surfaces)		0.04%
%w/w asbestos for	ACM - Parks, publi	ic open spaces, j	playing fields etc.		0.02%
%w/w asbestos for	ACM - Commercia	l / Industrial			0.05%

Note:

Note: ACM = Asbestos Containing Materials >7mm x 7mm (visible by eye) FA = Friable and Fibrous Asbestos Materials >7mm x 7mm (visible by eye) AF = Asbestos Fines <7mm x 7mm ACM including free fibres (visible by microscope only) * Field Observations: All fibro-cement fragments observed are assumed to contain Asbestos until otherwise tested and recorded as such.

NT = Not Tested

No Asbestos detected**' - No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.

TABLE H DUPLICATE SAMPLE

	BH1	DUPLICATE	RELATIVE PERCENTAGE
ANALYTE	0.2-0.3m	D1	DIFFERENCE
	mg/kg	mg/kg	%
HEAVY METALS			
Arsenic	8	8	0
Cadmium	<1	<1	0
Chromium	18	18	0
Copper	20	20	0
Nickel	9	8	12
Lead	56	60	7
Zinc	114	124	8
Mercury	<0.1	<0.1	0
TOTAL PETROLEUM HYDROCARBONS (TPH)			
C6 - C9	<10	<10	0
C10 - C14	<50	<50	0
C15 - C28	<100	<100	0
C29-C36	<100	<100	0
BTEX			
Benzene	<0.2	<0.2	0
Toluene	<0.5	<0.5	0
Ethyl Benzene	<0.5	<0.5	0
Total Xylenes	<0.5	<0.5	0
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)			
BENZO(a)PYRENE	<0.5	<0.5	0
Total PAH	<0.5	<0.5	0
ORGANOCHLORINE PESTICIDES (OCP)			
Heptachlor	<0.05	<0.05	0
Aldrin	<0.05	<0.05	0
Dieldrin	<0.05	<0.05	0
DDD	<0.05	<0.05	0
DDE	<0.05	<0.05	0
DDT	<0.2	<0.2	0
Chlordane (trans & cis)	<0.05	<0.05	0
POLYCHLORINATED BIPHENYLS (PCB)			
Total PCB	<0.1	<0.1	0
PHENOLS			
Total Phenols	<0.5	<0.5	0

No Asbestos detected**' - No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.

TABLE I RINSATE SAMPLE

ANALYTE	TE RINSATE (mg/L) 11.12.2023	
HEAVY METALS		
Arsenic	<0.001	0.001
Cadmium	<0.0001	0.0001
Chromium	<0.001	0.001
Copper	<0.001	0.001
Nickel	<0.001	0.001
Lead	<0.001	0.001
Zinc	<0.005	0.005
Mercury	<0.0001	0.0001

APPENDIX G: LABORATORY CERTIFICATES

REF: 23-1551 Detailed Site Investigation, 16 Lowana Street, Villawood NSW - ©2023 ECON Environmental Pty Ltd

Page 55 of 55 ECON Environmental Pty Ltd | ABN 25 641 106 783 | 1 St Aidans Avenue Oatlands NSW 2117 T: 1800 00 ECON | E: info@econenvironmental.com.au | W: www.econenvironmental.com.au

CERTIFICATE OF ANALYSIS Page Work Order : ES2342906 : 1 of 16 Client : ECON Environmental Pty Ltd Laboratory : Environmental Division Sydney Contact : info econenvironmental Contact : Customer Services ES Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : 1 St Aidans Avenue Oatlands 2117 Telephone : -----Telephone : +61-2-8784 8555 Project : VILLAWOOD Date Samples Received : 11-Dec-2023 11:55 Order number : 23-1551 Date Analysis Commenced : 13-Dec-2023 C-O-C number Issue Date : -----: 18-Dec-2023 15:58 Sampler : Con Kariotoglou Site -----Quote number ; EN/222 "Julula Accreditation No. 825 No. of samples received : 10 Accredited for compliance with

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

ISO/IEC 17025 - Testing

This Certificate of Analysis contains the following information:

: 10

- General Comments
- Analytical Results

No. of samples analysed

- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EA200N: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation.
 Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present)
 The Asbestos (Fines and Fibrous) weight is calculated from the extracted Fibrous Asbestos and Asbestos Fines as an equivalent weight of 100% Asbestos
 Percentages for Asbestos content in ACM are based on the 2013 NEPM default values.
 - All calculations of percentage Asbestos under this method are approximate and should be used as a guide only.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200N: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Page : 3 of 16 Work Order : ES2342906 Client : ECON Environmental Pty Ltd Project : VILLAWOOD

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.2-0.3	BH2 0.1-0.2	BH3 0.1-0.2	BH4 0.1-0.2	BH5 0-0.1
		Samplii	ng date / time	11-Dec-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2342906-001	ES2342906-002	ES2342906-003	ES2342906-004	ES2342906-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	i-110°C)							
Moisture Content		1.0	%	21.1	11.6	5.7	12.7	11.2
A200: AS 4964 - 2004 Identification o	f Asbestos in Soils	5						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Asbestos (Trace)	1332-21-4	-	-	No	No	No	No	No
Sample weight (dry)		0.01	g	533	685	741	559	647
Synthetic Mineral Fibre		-		No	No	No	No	No
Organic Fibre		-		No	No	No	No	No
APPROVED IDENTIFIER:		-		B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER
EA200N: Asbestos Quantification (nor	n-NATA)					1		·
Ø Asbestos (Fines and Fibrous <7mm)	1332-21-4	0.0004	g	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
ø Asbestos (Fines and Fibrous FA+AF)		0.001	% (w/w)	<0.001	<0.001	<0.001	<0.001	<0.001
ø Weight Used for % Calculation		0.0001	kg	0.533	0.685	0.741	0.559	0.647
ø Fibrous Asbestos >7mm		0.0004	g	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
EG005(ED093)T: Total Metals by ICP-A	ES							
Arsenic	7440-38-2	5	mg/kg	8	18	<5	<5	11
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	18	37	8	12	28
Copper	7440-50-8	5	mg/kg	20	14	9	15	17
Lead	7439-92-1	5	mg/kg	56	26	37	81	56
Nickel	7440-02-0	2	mg/kg	9	5	5	7	7
Zinc	7440-66-6	5	mg/kg	114	39	70	96	90
EG035T: Total Recoverable Mercury b	v FIMS					I		l
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP066: Polychlorinated Biphenyls (PC	B)						1 	
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides (C							1	

Page : 4 of 16 Work Order : ES2342906 Client : ECON Environmental Pty Ltd Project : VILLAWOOD

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.2-0.3	BH2 0.1-0.2	BH3 0.1-0.2	BH4 0.1-0.2	BH5 0-0.1
		Sampli	ng date / time	11-Dec-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2342906-001	ES2342906-002	ES2342906-003	ES2342906-004	ES2342906-005
				Result	Result	Result	Result	Result
P068A: Organochlorine Pesticides	(OC) - Continued							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 5 of 16 Work Order : ES2342906 Client : ECON Environmental Pty Ltd Project : VILLAWOOD

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.2-0.3	BH2 0.1-0.2	BH3 0.1-0.2	BH4 0.1-0.2	BH5 0-0.1
		Samplii	ng date / time	11-Dec-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2342906-001	ES2342906-002	ES2342906-003	ES2342906-004	ES2342906-005
				Result	Result	Result	Result	Result
P068B: Organophosphorus Pe								
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)A: Phenolic Compou	inds							
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	<1	<1	<1
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 6 of 16 Work Order : ES2342906 Client : ECON Environmental Pty Ltd Project : VILLAWOOD

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.2-0.3	BH2 0.1-0.2	BH3 0.1-0.2	BH4 0.1-0.2	BH5 0-0.1
		Sampli	ng date / time	11-Dec-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2342906-001	ES2342906-002	ES2342906-003	ES2342906-004	ES2342906-005
				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compounds								
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	<2	<2	<2
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarb	ons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.2-0.3	BH2 0.1-0.2	BH3 0.1-0.2	BH4 0.1-0.2	BH5 0-0.1
		Sampli	ng date / time	11-Dec-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2342906-001	ES2342906-002	ES2342906-003	ES2342906-004	ES2342906-005
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocarb	ons - Continued							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN						·		·
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	85.9	91.6	98.1	90.5	106
EP068S: Organochlorine Pesticide Sur	rogate							
Dibromo-DDE	21655-73-2	0.05	%	108	109	119	112	123

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1 0.2-0.3	BH2 0.1-0.2	BH3 0.1-0.2	BH4 0.1-0.2	BH5 0-0.1
		Sampli	ing date / time	11-Dec-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2342906-001	ES2342906-002	ES2342906-003	ES2342906-004	ES2342906-005
				Result	Result	Result	Result	Result
EP068T: Organophosphorus Pestici	de Surrogate							
DEF	78-48-8	0.05	%	119	112	122	115	139
EP075(SIM)S: Phenolic Compound S	urrogates							·
Phenol-d6	13127-88-3	0.5	%	86.9	84.7	86.4	82.2	82.5
2-Chlorophenol-D4	93951-73-6	0.5	%	87.2	91.4	93.4	84.7	90.6
2.4.6-Tribromophenol	118-79-6	0.5	%	53.2	51.1	48.8	59.3	58.2
EP075(SIM)T: PAH Surrogates								·
2-Fluorobiphenyl	321-60-8	0.5	%	95.2	96.1	95.7	90.4	91.9
Anthracene-d10	1719-06-8	0.5	%	98.7	83.4	94.6	94.0	83.5
4-Terphenyl-d14	1718-51-0	0.5	%	109	107	94.1	95.2	88.6
EP080S: TPH(V)/BTEX Surrogates								·
1.2-Dichloroethane-D4	17060-07-0	0.2	%	76.9	86.4	85.4	87.6	88.0
Toluene-D8	2037-26-5	0.2	%	83.5	92.9	92.0	93.0	94.4
4-Bromofluorobenzene	460-00-4	0.2	%	92.1	98.2	97.2	100	96.2

ub-Matrix: SOIL Matrix: SOIL)			Sample ID	BH6 0.1-0.2	BH7 0.2-0.3	BH8 0-0.1	D1	
,		Sampli	ng date / time	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2342906-006	ES2342906-007	ES2342906-008	ES2342906-009	
				Result	Result	Result	Result	
A055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		1.0	%	7.1	12.2	12.4	21.1	
A200: AS 4964 - 2004 Identification of	Asbestos in Soils	5						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	
Asbestos Type	1332-21-4	-		-	-	-	-	
Asbestos (Trace)	1332-21-4	-	-	No	No	No	No	
Sample weight (dry)		0.01	g	694	548	691	602	
Synthetic Mineral Fibre		-		No	No	No	No	
Organic Fibre		-		No	No	No	No	
APPROVED IDENTIFIER:		-		B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER	
EA200N: Asbestos Quantification (non	-NATA)						•	
Ø Asbestos (Fines and Fibrous <7mm)	1332-21-4	0.0004	g	<0.0004	<0.0004	<0.0004	<0.0004	
ø Asbestos (Fines and Fibrous FA+AF)		0.001	% (w/w)	<0.001	<0.001	<0.001	<0.001	
ø Weight Used for % Calculation		0.0001	kg	0.694	0.548	0.691	0.602	
ø Fibrous Asbestos >7mm		0.0004	g	<0.0004	<0.0004	<0.0004	<0.0004	
EG005(ED093)T: Total Metals by ICP-A	ES							
Arsenic	7440-38-2	5	mg/kg	<5	8	7	8	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	12	20	18	18	
Copper	7440-50-8	5	mg/kg	30	18	29	20	
Lead	7439-92-1	5	mg/kg	56	38	90	60	
Nickel	7440-02-0	2	mg/kg	8	8	10	8	
Zinc	7440-66-6	5	mg/kg	72	178	196	124	
G035T: Total Recoverable Mercury b	y FIMS					l 	· · · · · · · · · · · · · · · · · · ·	
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	
	B)					· ·	·	
EP066: Polychlorinated Biphenyls (PCI								

Page: 10 of 16Work Order: ES2342906Client: ECON Environmental Pty LtdProject: VILLAWOOD

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH6 0.1-0.2	BH7 0.2-0.3	BH8 0-0.1	D1	
		Samplii	ng date / time	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2342906-006	ES2342906-007	ES2342906-008	ES2342906-009	
				Result	Result	Result	Result	
EP068A: Organochlorine Pesticide	s (OC) - Continued							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	

Page : 11 of 16 Work Order : ES2342906 Client : ECON Environmental Pty Ltd Project : VILLAWOOD

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH6 0.1-0.2	BH7 0.2-0.3	BH8 0-0.1	D1	
		Samplir	ng date / time	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2342906-006	ES2342906-007	ES2342906-008	ES2342906-009	
				Result	Result	Result	Result	
EP068B: Organophosphorus Pe								
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
EP075(SIM)A: Phenolic Compou	inds							
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	<1	<1	
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	

Page : 12 of 16 Work Order : ES2342906 Client : ECON Environmental Pty Ltd Project : VILLAWOOD

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH6 0.1-0.2	BH7 0.2-0.3	BH8 0-0.1	D1	
		Sampli	ng date / time	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2342906-006	ES2342906-007	ES2342906-008	ES2342906-009	
				Result	Result	Result	Result	
EP075(SIM)A: Phenolic Compounds								
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	<2	<2	
EP075(SIM)B: Polynuclear Aromatic	: Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Sum of polycyclic aromatic hydrocar	bons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH6 0.1-0.2	BH7 0.2-0.3	BH8 0-0.1	D1	
		Sampli	ng date / time	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2342906-006	ES2342906-007	ES2342906-008	ES2342906-009	
				Result	Result	Result	Result	
EP080/071: Total Petroleum Hydrocarb	oons - Continued							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	
>C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	
EP066S: PCB Surrogate						· 	· 	
Decachlorobiphenyl	2051-24-3	0.1	%	80.2	83.1	81.8	74.1	
EP068S: Organochlorine Pesticide Su	rrogate							
Dibromo-DDE	21655-73-2	0.05	%	98.8	101	104	90.3	

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH6 0.1-0.2	BH7 0.2-0.3	BH8 0-0.1	D1	
		Sampli	ing date / time	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	11-Dec-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2342906-006	ES2342906-007	ES2342906-008	ES2342906-009	
				Result	Result	Result	Result	
EP068T: Organophosphorus Pestici	de Surrogate							
DEF	78-48-8	0.05	%	100	111	106	90.4	
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	0.5	%	80.2	87.4	89.8	92.4	
2-Chlorophenol-D4	93951-73-6	0.5	%	88.0	88.8	88.6	86.8	
2.4.6-Tribromophenol	118-79-6	0.5	%	55.9	57.8	55.1	58.7	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	89.4	93.4	86.3	90.7	
Anthracene-d10	1719-06-8	0.5	%	91.2	93.7	86.6	88.8	
4-Terphenyl-d14	1718-51-0	0.5	%	91.2	92.8	87.2	96.4	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	88.0	82.3	91.3	87.0	
Toluene-D8	2037-26-5	0.2	%	86.5	79.6	92.5	88.5	
4-Bromofluorobenzene	460-00-4	0.2	%	94.8	88.6	99.7	93.1	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	R1	 	
		Samplii	ng date / time	11-Dec-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2342906-010	 	
				Result	 	
EG020T: Total Metals by ICP-	MS					
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
EG035T: Total Recoverable N	lercury by FIMS					·
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	

Analytical Results

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbesto	s in Soils	
EA200: Description	BH1 0.2-0.3 - 11-Dec-2023 00:00	A soil sample.
EA200: Description	BH2 0.1-0.2 - 11-Dec-2023 00:00	A soil sample.
EA200: Description	BH3 0.1-0.2 - 11-Dec-2023 00:00	A soil sample.
EA200: Description	BH4 0.1-0.2 - 11-Dec-2023 00:00	A soil sample.
EA200: Description	BH5 0-0.1 - 11-Dec-2023 00:00	A soil sample.
EA200: Description	BH6 0.1-0.2 - 11-Dec-2023 00:00	A soil sample.
EA200: Description	BH7 0.2-0.3 - 11-Dec-2023 00:00	A soil sample.
EA200: Description	BH8 0-0.1 - 11-Dec-2023 00:00	A soil sample.
EA200: Description	D1 - 11-Dec-2023 00:00	A soil sample.

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogate	e		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surro	gate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogate	es		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	63	125
Toluene-D8	2037-26-5	67	124
4-Bromofluorobenzene	460-00-4	66	131

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200N: Asbestos Quantification (non-NATA)

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

QUALITY CONTROL REPORT

Work Order	: ES2342906	Page	: 1 of 14	
Client	: ECON Environmental Pty Ltd	Laboratory	: Environmental Division	Sydney
Contact	: info econenvironmental	Contact	: Customer Services ES	
Address	: 1 St Aidans Avenue Oatlands 2117	Address	: 277-289 Woodpark Roa	ad Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: VILLAWOOD	Date Samples Received	: 11-Dec-2023	SMIIII.
Order number	: 23-1551	Date Analysis Commenced	: 13-Dec-2023	
C-O-C number	:	Issue Date	: 18-Dec-2023	
Sampler	: Con Kariotoglou			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 10			Accredited for compliance with
No. of samples analysed	: 10			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES(C	QC Lot: 5491927)							
ES2342825-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	24	27	14.4	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	13	15	12.3	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	6	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	20	39	63.9	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	37	26	34.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	50	51	0.0	0% - 50%
ES2342849-007	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	16	14	11.4	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	7	6	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	8	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	25	26	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	15	19	23.8	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	90	103	13.0	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110°(C) (QC Lot: 5491932)					,		
ES2342825-003	Anonymous	EA055: Moisture Content		0.1 (1.0)*	%	14.9	14.4	3.1	0% - 50%
ES2342906-003	BH3 0.1-0.2	EA055: Moisture Content		0.1 (1.0)*	%	5.7	6.0	5.1	No Limit
EG035T: Total Reco	overable Mercury by FIM	S (QC Lot: 5491926)				·			
ES2342825-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.3	0.8	94.7	No Limit
ES2342849-007	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit

Page	: 3 of 14
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
	ted Biphenyls (PCB)		Cho Humber	Lon	- Chint	oliginaritesuit	Duplicate Result	NI D (70)	Acceptable III D (76)
ES2342906-007	BH7 0.2-0.3			0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2342906-007	BH1 0.2-0.3	EP066: Total Polychlorinated biphenyls		0.1		<0.1	<0.1	0.0	No Limit
		EP066: Total Polychlorinated biphenyls		0.1	mg/kg	~0.1	<0.1	0.0	
	orine Pesticides (OC)								
ES2342906-007	BH7 0.2-0.3	EP068: alpha-BHC	319-84-6	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
ES2342906-001	BH1 0.2-0.3	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit

Page	: 4 of 14
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Sub-Matrix: SOIL						Laboratory D	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068A: Organochlo	orine Pesticides (OC) (C	QC Lot: 5485299) - continued							
ES2342906-001	BH1 0.2-0.3	EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP068B: Organopho	osphorus Pesticides (OP	P) (QC Lot: 5485299)							
ES2342906-007	BH7 0.2-0.3	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
ES2342906-001	BH1 0.2-0.3	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

Page	5 of 14
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068B: Organopho	osphorus Pesticides ((DP) (QC Lot: 5485299) - continued							
ES2342906-001	BH1 0.2-0.3	EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)A: Phenc	olic Compounds (QC	Lot: 5485300)							
ES2342906-007	BH7 0.2-0.3	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.0	No Limit
ES2342906-001	BH1 0.2-0.3	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	ocarbons (QC Lot: 5485300)							
ES2342906-007	BH7 0.2-0.3	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	: 6 of 14
Work Order	ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polynu	clear Aromatic Hydroca	arbons (QC Lot: 5485300) - continued							
ES2342906-007	BH7 0.2-0.3	EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2342906-001	BH1 0.2-0.3	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (·

Page	: 7 of 14
Work Order	ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pe	etroleum Hydrocarbo	ns (QC Lot: 5485298) - continued							
ES2342906-007	BH7 0.2-0.3	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2342906-001	BH1 0.2-0.3	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pe	etroleum Hydrocarboi	ns (QC Lot: 5491660)							
ES2342849-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2342906-005	BH5 0-0.1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 5485298)							
ES2342906-007	BH7 0.2-0.3	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2342906-001	BH1 0.2-0.3	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 5491660)							
ES2342849-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2342906-005	BH5 0-0.1	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (QC	Cot: 5491660)								
ES2342849-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2342906-005	BH5 0-0.1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
				-					
Sub-Matrix: WATER Laboratory sample ID	Sample ID	Mathada Commonwed	CAS Number	LOR	Unit	Original Result	Duplicate (DUP) Report Duplicate Result	RPD (%)	Acceptable RPD (%)
		Method: Compound	CAS Nulliber	LUK	Unit		Dupilcale Result	RFU (%)	Acceptable RPD (%)
EGUZUT: Total Meta	Is by ICP-MS (QC Lo	1: 5491151)							

Page	: 8 of 14
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EG020T: Total Metal	s by ICP-MS (QC Lot: 549	1151) - continued								
ES2342845-002	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.009	0.010	0.0	No Limit	
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.009	0.009	0.0	No Limit	
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.005	0.006	0.0	No Limit	
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.031	0.030	4.4	0% - 20%	
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit	
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.098	0.097	0.0	0% - 50%	
ES2342916-007	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	0.1 µg/L	0.0001	0.0	No Limit	
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<1 µg/L	<0.001	0.0	No Limit	
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<1 µg/L	<0.001	0.0	No Limit	
		EG020A-T: Copper	7440-50-8	0.001	mg/L	3 µg/L	0.002	0.0	No Limit	
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<1 µg/L	<0.001	0.0	No Limit	
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	68 µg/L	0.073	6.1	0% - 20%	
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	52 μg/L	0.053	0.0	0% - 50%	
EG035T: Total Reco	overable Mercury by FIMS	(QC Lot: 5494994)								
ES2342846-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
ES2342916-005	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.1 µg/L	<0.0001	0.0	No Limit	

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 5491927)									
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	112	88.0	113	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	101	70.0	130	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	129	68.0	132	
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	110	89.0	111	
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	119	82.0	119	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	110	80.0	120	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	102	66.0	133	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 549192	6)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	116	70.0	125	
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 5485301)									
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	97.8	62.0	126	
EP068A: Organochlorine Pesticides (OC) (QCLot: 5485299)								'	
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	99.9	69.0	113	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	101	65.0	117	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	83.6	67.0	119	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.2	68.0	116	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	87.0	65.0	117	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.2	67.0	115	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	86.3	69.0	115	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	89.8	62.0	118	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	89.9	63.0	117	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.6	66.0	116	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.3	64.0	116	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	89.9	66.0	116	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.1	67.0	115	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	91.3	67.0	123	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	90.4	69.0	115	
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	91.8	69.0	121	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	92.0	56.0	120	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.4	62.0	124	

Page	: 10 of 14
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Sub-Matrix: SOIL		Method Blank (MB)			Laboratory Control Spike (LCS) Report		
			Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound CAS Nu	mber LOR	Unit	Result	Concentration	LCS	Low	High
EP068A: Organochlorine Pesticides (OC) (QCLot: 5485299) - conti							
	29-3 0.2	mg/kg	<0.2	0.5 mg/kg	89.4	66.0	120
EP068: Endrin ketone 53494-		mg/kg	<0.05	0.5 mg/kg	91.0	64.0	122
EP068: Methoxychlor 72-	3-5 0.2	mg/kg	<0.2	0.5 mg/kg	88.5	54.0	130
EP068B: Organophosphorus Pesticides (OP) (QCLot: 5485299)							
EP068: Dichlorvos 62-	' 3-7 0.05	mg/kg	<0.05	0.5 mg/kg	89.3	59.0	119
EP068: Demeton-S-methyl 919-	36-8 0.05	mg/kg	<0.05	0.5 mg/kg	86.4	62.0	128
EP068: Monocrotophos 6923-	22-4 0.2	mg/kg	<0.2	0.5 mg/kg	92.4	54.0	126
EP068: Dimethoate 60-	51-5 0.05	mg/kg	<0.05	0.5 mg/kg	102	67.0	119
EP068: Diazinon 333-	1-5 0.05	mg/kg	<0.05	0.5 mg/kg	88.3	70.0	120
EP068: Chlorpyrifos-methyl 5598-	3-0 0.05	mg/kg	<0.05	0.5 mg/kg	88.8	72.0	120
EP068: Parathion-methyl 298-	00-0 0.2	mg/kg	<0.2	0.5 mg/kg	86.2	68.0	120
EP068: Malathion 121-	75-5 0.05	mg/kg	<0.05	0.5 mg/kg	94.2	68.0	122
EP068: Fenthion 55-	8-9 0.05	mg/kg	<0.05	0.5 mg/kg	85.8	69.0	117
EP068: Chlorpyrifos 2921-	88-2 0.05	mg/kg	<0.05	0.5 mg/kg	89.2	76.0	118
EP068: Parathion 56-	8-2 0.2	mg/kg	<0.2	0.5 mg/kg	83.3	64.0	122
EP068: Pirimphos-ethyl 23505-	1-1 0.05	mg/kg	<0.05	0.5 mg/kg	89.6	70.0	116
EP068: Chlorfenvinphos 470-	0.05	mg/kg	<0.05	0.5 mg/kg	97.8	69.0	121
EP068: Bromophos-ethyl 4824-	78-6 0.05	mg/kg	<0.05	0.5 mg/kg	100	66.0	118
EP068: Fenamiphos 22224-	02-6 0.05	mg/kg	<0.05	0.5 mg/kg	92.3	68.0	124
EP068: Prothiofos 34643-	6-4 0.05	mg/kg	<0.05	0.5 mg/kg	90.3	62.0	112
EP068: Ethion 563-	2-2 0.05	mg/kg	<0.05	0.5 mg/kg	89.4	68.0	120
EP068: Carbophenothion 786-	9-6 0.05	mg/kg	<0.05	0.5 mg/kg	89.7	65.0	127
EP068: Azinphos Methyl 86-	60-0 0.05	mg/kg	<0.05	0.5 mg/kg	89.4	41.0	123
EP075(SIM)A: Phenolic Compounds (QCLot: 5485300)							
EP075(SIM): Phenol 108-	05-2 0.5	mg/kg	<0.5	6 mg/kg	88.9	71.0	125
EP075(SIM): 2-Chlorophenol 95-	67-8 0.5	mg/kg	<0.5	6 mg/kg	94.0	72.0	124
EP075(SIM): 2-Methylphenol 95-	8-7 0.5	mg/kg	<0.5	6 mg/kg	95.5	71.0	123
EP075(SIM): 3- & 4-Methylphenol 1319-	7-3 1	mg/kg	<1	12 mg/kg	95.5	67.0	127
EP075(SIM): 2-Nitrophenol 88-	75-5 0.5	mg/kg	<0.5	6 mg/kg	85.6	54.0	114
EP075(SIM): 2.4-Dimethylphenol 105-	67-9 0.5	mg/kg	<0.5	6 mg/kg	96.4	68.0	126
EP075(SIM): 2.4-Dichlorophenol 120-	33-2 0.5	mg/kg	<0.5	6 mg/kg	90.0	66.0	120
EP075(SIM): 2.6-Dichlorophenol 87-	65-0 0.5	mg/kg	<0.5	6 mg/kg	95.7	70.0	120
EP075(SIM): 4-Chloro-3-methylphenol 59-	60-7 0.5	mg/kg	<0.5	6 mg/kg	93.1	70.0	116
EP075(SIM): 2.4.6-Trichlorophenol 88-	06-2 0.5	mg/kg	<0.5	6 mg/kg	92.7	54.0	114

Page	: 11 of 14
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)A: Phenolic Compounds (QCLot: 548	5300) - continued							
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	6 mg/kg	75.8	60.0	114
EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	12 mg/kg	38.9	10.0	80.0
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon	s (QCLot: 5485300)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	93.6	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	102	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	108	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	100	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	96.3	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	90.2	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	91.2	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	97.4	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	97.4	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	106	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	104	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	92.3	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	97.3	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	84.0	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	92.4	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	87.7	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCLo	ot: 5485298)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	102	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	96.4	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	90.6	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLo	ot: 5491660)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	106	72.2	131
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Fractions (QCL	ot: 5485298)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	102	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	92.5	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	84.1	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Fractions (QCL	ot: 5491 <u>660)</u>						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	101	72.4	133
EP080: BTEXN (QCLot: 5491660)						·	·	
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	88.6	76.0	124
			1	1	1	1	1	L

Page	: 12 of 14
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080: BTEXN (QCLot: 5491660) - continued									
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	89.6	78.5	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	88.4	77.4	121	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	88.1	78.2	121	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	87.7	81.3	121	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	90.7	78.8	122	
Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020T: Total Metals by ICP-MS (QCLot: 5491151)									
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	103	82.0	114	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	102	84.0	112	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	104	86.0	116	
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	103	83.0	118	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	101	85.0	115	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	101	84.0	116	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	102	79.0	117	
EG035T: Total Recoverable Mercury by FIMS (QCL	ot: 5494994)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	91.9	77.0	111	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.
Sub-Matrix: SOIL
Matrix Spike (MS) Report

				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
boratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005(ED093)T: To	otal Metals by ICP-AES (QCLot: 5491927)						
S2342825-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	108	70.0	130
	EG005T: Cadmium	7440-43-9	50 mg/kg	96.6	70.0	130	
	EG005T: Chromium	7440-47-3	50 mg/kg	102	68.0	132	
	EG005T: Copper	7440-50-8	250 mg/kg	103	70.0	130	
		EG005T: Lead	7439-92-1	250 mg/kg	99.9	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	96.5	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	101	66.0	133

Page	: 13 of 14
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Matrix Spike (MS) Report Sub-Matrix: SOIL Spike SpikeRecovery(%) Acceptable Limits (%) Laboratory sample ID Sample ID CAS Number MS Concentration Low High Method: Compound EG035T: Total Recoverable Mercury by FIMS (QCLot: 5491926) - continued ES2342825-001 Anonymous EG035T: Mercurv 7439-97-6 5 mg/kg 96.0 70.0 130 EP066: Polychlorinated Biphenyls (PCB) (QCLot: 5485301) ES2342906-001 BH1 0.2-0.3 118 70.0 130 1 mg/kg EP066: Total Polychlorinated biphenvls ____ EP068A: Organochlorine Pesticides (OC) (QCLot: 5485299) ES2342906-001 BH1 0.2-0.3 58-89-9 0.5 mg/kg 113 70.0 130 EP068: gamma-BHC 76-44-8 0.5 mg/kg 111 70.0 130 EP068: Heptachlor 309-00-2 0.5 mg/kg 115 70.0 130 EP068: Aldrin 60-57-1 109 70.0 130 0.5 mg/kg EP068: Dieldrin 72-20-8 2 mg/kg 100 70.0 130 EP068: Endrin 130 50-29-3 73.3 70.0 EP068: 4.4`-DDT 2 mg/kg EP068B: Organophosphorus Pesticides (OP) (QCLot: 5485299) ES2342906-001 BH1 0.2-0.3 333-41-5 70.0 EP068: Diazinon 0.5 mg/kg 116 130 5598-13-0 107 70.0 130 EP068: Chlorpyrifos-methyl 0.5 mg/kg 23505-41-1 109 70.0 130 0.5 mg/kg EP068: Pirimphos-ethvl 4824-78-6 0.5 mg/kg 112 70.0 130 EP068: Bromophos-ethyl 34643-46-4 104 70.0 130 0.5 mg/kg EP068: Prothiofos EP075(SIM)A: Phenolic Compounds (QCLot: 5485300) ES2342906-001 BH1 0.2-0.3 108-95-2 95.0 70.0 130 10 mg/kg EP075(SIM): Phenol 95-57-8 10 mg/kg 91.1 70.0 130 EP075(SIM): 2-Chlorophenol 88-75-5 10 mg/kg 88.9 60.0 130 EP075(SIM): 2-Nitrophenol 59-50-7 10 mg/kg 90.8 70.0 130 EP075(SIM): 4-Chloro-3-methylphenol 87-86-5 10 mg/kg 84.4 20.0 130 EP075(SIM): Pentachlorophenol EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 5485300) ES2342906-001 BH1 0.2-0.3 83-32-9 10 mg/kg 91.5 70.0 130 EP075(SIM): Acenaphthene 129-00-0 10 mg/kg 102 70.0 130 EP075(SIM): Pyrene EP080/071: Total Petroleum Hydrocarbons (QCLot: 5485298) ES2342906-001 BH1 0.2-0.3 480 mg/kg 114 73.0 137 EP071: C10 - C14 Fraction ----3100 mg/kg 116 53.0 131 EP071: C15 - C28 Fraction ----116 52.0 132 EP071: C29 - C36 Fraction ____ 2060 mg/kg EP080/071: Total Petroleum Hydrocarbons (QCLot: 5491660) ES2342849-001 Anonymous EP080: C6 - C9 Fraction 32.5 mg/kg 114 60.4 142 ____ EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 5485298) ES2342906-001 BH1 0.2-0.3 860 ma/ka 98.8 73.0 137 EP071: >C10 - C16 Fraction ----4320 mg/kg 116 53.0 131 EP071: >C16 - C34 Fraction ----132 EP071: >C34 - C40 Fraction ____ 890 mg/kg 111 52.0 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 5491660)

Page	: 14 of 14
Work Order	ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Matrix Spike (MS) Report Sub-Matrix: SOIL Spike SpikeRecovery(%) Acceptable Limits (%) Laboratory sample ID Sample ID CAS Number Concentration MS Low High Method: Compound EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 5491660) - continued ES2342849-001 Anonymous EP080: C6 - C10 Fraction C6 C10 37.5 mg/kg 105 61.1 142 EP080: BTEXN (QCLot: 5491660) ES2342849-001 71-43-2 2.5 mg/kg 94.1 62.1 122 Anonymous EP080: Benzene 108-88-3 89.0 66.6 119 2.5 mg/kg EP080: Toluene 100-41-4 87.9 67.4 123 2.5 mg/kg EP080: Ethylbenzene 2.5 mg/kg 88.0 66.4 121 108-38-3 EP080: meta- & para-Xylene 106-42-3 95-47-6 2.5 mg/kg 88.2 70.7 121 EP080: ortho-Xylene 91-20-3 2.5 mg/kg 78.5 61.1 115 EP080: Naphthalene Matrix Spike (MS) Report Sub-Matrix: WATER SpikeRecovery(%) Acceptable Limits (%) Spike Laboratory sample ID Sample ID CAS Number Low Method: Compound Concentration MS High EG020T: Total Metals by ICP-MS (QCLot: 5491151) ES2342845-001 Anonymous 7440-38-2 1 mg/L 116 70.0 130 EG020A-T: Arsenic 7440-43-9 EG020A-T: Cadmium 0.25 mg/L 102 70.0 130 7440-47-3 98.1 70.0 130 EG020A-T: Chromium 1 mg/L 7440-50-8 111 70.0 130 EG020A-T: Copper 1 mg/L 7439-92-1 130 1 mg/L 111 70.0 EG020A-T: Lead 7440-02-0 1 mg/L 109 70.0 130 EG020A-T: Nickel 7440-66-6 1 mg/L 100 70.0 130 EG020A-T: Zinc EG035T: Total Recoverable Mercury by FIMS (QCLot: 5494994) ES2342896-001 Anonymous 7439-97-6 0.01 mg/L 91.5 70.0 130 EG035T: Mercury

	QA/QC Compliance Assessment to assist with Quality Review							
Work Order	ES2342906	Page	: 1 of 9					
Client	: ECON Environmental Pty Ltd	Laboratory	: Environmental Division Sydney					
Contact	: info econenvironmental	Telephone	: +61-2-8784 8555					
Project	: VILLAWOOD	Date Samples Received	: 11-Dec-2023					
Site	:	Issue Date	: 18-Dec-2023					
Sampler	: Con Kariotoglou	No. of samples received	: 10					
Order number	: 23-1551	No. of samples analysed	: 10					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation:	$\mathbf{x} = Holding$	time breach	. 🗸	= Within	holding time.
				- •••••••••	noiung une.

Matrix: SOIL					Evaluation	: × = Holding time	e breach ; ✓ = Withi	n holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 10	95-110°C)							
Soil Glass Jar - Unpreserved (EA055) BH1 0.2-0.3, BH3 0.1-0.2,	BH2 0.1-0.2, BH4 0.1-0.2,	11-Dec-2023				14-Dec-2023	25-Dec-2023	~
BH5 0-0.1, BH7 0.2-0.3, D1	BH6 0.1-0.2, BH8 0-0.1,							
EA200: AS 4964 - 2004 Identification	of Asbestos in Soils			J				
Snap Lock Bag - Friable Asbestos/PS BH1 0.2-0.3, BH3 0.1-0.2, BH5 0-0.1, BH7 0.2-0.3, D1	BH2 0.1-0.2, BH4 0.1-0.2, BH6 0.1-0.2, BH8 0-0.1,	11-Dec-2023				13-Dec-2023	08-Jun-2024	1
EA200N: Asbestos Quantification (no Snap Lock Bag - Friable Asbestos/PS BH1 0.2-0.3, BH3 0.1-0.2, BH5 0-0.1, BH7 0.2-0.3, D1		11-Dec-2023				13-Dec-2023	08-Jun-2024	1
EG005(ED093)T: Total Metals by ICP- Soil Glass Jar - Unpreserved (EG005) BH1 0.2-0.3, BH3 0.1-0.2, BH5 0-0.1, BH7 0.2-0.3, D1		11-Dec-2023	15-Dec-2023	08-Jun-2024	✓	16-Dec-2023	08-Jun-2024	~

Page	: 3 of 9
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Matrix: SOIL		-	-		Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
BH1 0.2-0.3,	BH2 0.1-0.2,	11-Dec-2023	15-Dec-2023	08-Jan-2024	~	18-Dec-2023	08-Jan-2024	 ✓
BH3 0.1-0.2,	BH4 0.1-0.2,							
BH5 0-0.1,	BH6 0.1-0.2,							
BH7 0.2-0.3,	BH8 0-0.1,							
D1								
EP066: Polychlorinated Biphenyls (PCB)								
Soil Glass Jar - Unpreserved (EP066)								
BH1 0.2-0.3,	BH2 0.1-0.2,	11-Dec-2023	15-Dec-2023	25-Dec-2023	1	16-Dec-2023	24-Jan-2024	✓
BH3 0.1-0.2,	BH4 0.1-0.2,							
BH5 0-0.1,	BH6 0.1-0.2,							
BH7 0.2-0.3,	BH8 0-0.1,							
D1								
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved (EP068)								
BH1 0.2-0.3,	BH2 0.1-0.2,	11-Dec-2023	15-Dec-2023	25-Dec-2023	1	15-Dec-2023	24-Jan-2024	✓
BH3 0.1-0.2,	BH4 0.1-0.2,							
BH5 0-0.1,	BH6 0.1-0.2							
Soil Glass Jar - Unpreserved (EP068)								
BH7 0.2-0.3,	BH8 0-0.1,	11-Dec-2023	15-Dec-2023	25-Dec-2023	~	16-Dec-2023	24-Jan-2024	✓
D1								
EP068B: Organophosphorus Pesticides (OP)		-				1		
Soil Glass Jar - Unpreserved (EP068)		44 5	15 5	25-Dec-2023		45 5	24-Jan-2024	
BH1 0.2-0.3,	BH2 0.1-0.2,	11-Dec-2023	15-Dec-2023	25-Dec-2023	1	15-Dec-2023	24-Jan-2024	✓
BH3 0.1-0.2,	BH4 0.1-0.2,							
BH5 0-0.1,	BH6 0.1-0.2							
Soil Glass Jar - Unpreserved (EP068)		11-Dec-2023	15-Dec-2023	25-Dec-2023	1	16-Dec-2023	24-Jan-2024	
BH7 0.2-0.3, D1	BH8 0-0.1,	11-Dec-2023	15-Dec-2025	20-060-2020	1	10-Dec-2023	24-3411-2024	✓
EP075(SIM)A: Phenolic Compounds								
Soil Glass Jar - Unpreserved (EP075(SIM)) BH1 0.2-0.3		11-Dec-2023	15-Dec-2023	25-Dec-2023	1	15-Dec-2023	24-Jan-2024	1
Soil Glass Jar - Unpreserved (EP075(SIM))								
BH2 0.1-0.2,	BH3 0.1-0.2,	11-Dec-2023	15-Dec-2023	25-Dec-2023	~	16-Dec-2023	24-Jan-2024	✓
BH4 0.1-0.2,	BH5 0-0.1,							
BH6 0.1-0.2,	BH7 0.2-0.3,							
BH8 0-0.1,	D1							

Page	: 4 of 9
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = With	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP075(SIM))		11-Dec-2023	15-Dec-2023	25-Dec-2023		15-Dec-2023	24-Jan-2024	
BH1 0.2-0.3		11-Dec-2023	15-Dec-2023	20-Det-2023	✓	15-Dec-2023	24-Jd11-2024	✓
Soil Glass Jar - Unpreserved (EP075(SIM)) BH2 0.1-0.2,	BH3 0.1-0.2.	11-Dec-2023	15-Dec-2023	25-Dec-2023	1	16-Dec-2023	24-Jan-2024	1
BH4 0.1-0.2,	BH5 0-0.1,				· ·			•
BH6 0.1-0.2,	BH7 0.2-0.3,							
BH8 0-0.1,	D1							
EP080/071: Total Petroleum Hydrocarbons Soil Glass Jar - Unpreserved (EP080)		<u> </u>						
BH1 0.2-0.3,	BH2 0.1-0.2.	11-Dec-2023	14-Dec-2023	25-Dec-2023	1	15-Dec-2023	25-Dec-2023	1
BH3 0.1-0.2,	BH4 0.1-0.2,				_			•
BH5 0-0.1,	BH6 0.1-0.2,							
BH7 0.2-0.3,	BH8 0-0.1,							
D1	D110 0-0.1,							
Soil Glass Jar - Unpreserved (EP071)								
BH1 0.2-0.3.	BH2 0.1-0.2.	11-Dec-2023	15-Dec-2023	25-Dec-2023	1	15-Dec-2023	24-Jan-2024	1
BH3 0.1-0.2,	BH2 0.1-0.2, BH4 0.1-0.2,	11 200 2020	10 200 2020	20 200 2020	v	10 200 2020	2100112021	v
BH5 0-0.1,	BH4 0.1-0.2, BH6 0.1-0.2,							
BH7 0.2-0.3.								
D1	BH8 0-0.1,							
EP080/071: Total Recoverable Hydrocarbons - NEPI	M 2013 Fractions					1		
Soil Glass Jar - Unpreserved (EP080) BH1 0.2-0.3,	BH2 0.1-0.2.	11-Dec-2023	14-Dec-2023	25-Dec-2023	1	15-Dec-2023	25-Dec-2023	1
BH3 0.1-0.2,	BH2 0.1-0.2, BH4 0.1-0.2,			10 200 1010	· ·	10 200 2020	20 200 2020	•
BH5 0-0.1,	BH6 0.1-0.2,							
BH7 0.2-0.3.	BH8 0-0.1,							
D1	БПО 0-0.1,							
Soil Glass Jar - Unpreserved (EP071) BH1 0.2-0.3,	BH2 0.1-0.2,	11-Dec-2023	15-Dec-2023	25-Dec-2023	1	15-Dec-2023	24-Jan-2024	1
BH3 0.1-0.2,	BH2 0.1-0.2, BH4 0.1-0.2,			20 200 2020	Ť		2100112024	v
BH5 0-0.1,	вна 0.1-0.2, ВН6 0.1-0.2.							
ВН5 0-0.1, ВН7 0.2-0.3,								
D1	BH8 0-0.1,							
EP080: BTEXN						1		
Soil Glass Jar - Unpreserved (EP080)		11-Dec-2023	14-Dec-2023	25-Dec-2023	1	15-Dec-2023	25-Dec-2023	
BH1 0.2-0.3,	BH2 0.1-0.2,	11-Dec-2023	14-Dec-2023	20-060-2020	~	13-Dec-2023	20-060-2020	✓
BH3 0.1-0.2,	BH4 0.1-0.2,							
BH5 0-0.1,	BH6 0.1-0.2,							
BH7 0.2-0.3,	BH8 0-0.1,							
D1								
Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = With	n holding time

Page	5 of 9
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Matrix: WATER Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EG020T: Total Metals by ICP-MS Clear Plastic Bottle - Natural (EG020A-T) 08-Jun-2024 11-Dec-2023 14-Dec-2023 08-Jun-2024 14-Dec-2023 R1 1 \checkmark EG035T: Total Recoverable Mercury by FIMS Clear Plastic Bottle - Natural (EG035T) 11-Dec-2023 18-Dec-2023 08-Jan-2024 R1 -------------- \checkmark

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	2	11	18.18	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
					-	1	1

Page	: 7 of 9
Work Order	: ES2342906
Client	: ECON Environmental Pty Ltd
Project	: VILLAWOOD

Matrix: WATER	Evaluation: * = Quality Control frequency not within specification ; ✓ = Quality Control frequency within						
Quality Control Sample Type		Co	unt	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Total Mercury by FIMS	EG035T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Asbestos Classification and Quantitation per NEPM 2013	* EA200N	SOIL	Asbestos Classification and Quantitation per NEPM with Confirmation of Identification by AS 4964 - Gravimetric determination of Asbestos Containing Material, Fibrous Asbestos, Asbestos Fines and sample weight and calculation of percentage concentrations per NEPM protocols. Asbestos (Fines and Fibrous FA+AF) is reported as the equivalent weight in the sample received after accounting for sub-sampling (where applicable for the <7mm and/or <2mm fractions).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

		ES2342906									
ent : ECON Environmental Pty Ltd intact : info econenvironmental dress : 1 St Aidans Avenue Oatlands 2117		ivironmental Division Sydney istomer Services ES 7-289 Woodpark Road Smithfield SW Australia 2164									
nfo@econenvironmental.com.au 	Telephone : -	ALSEnviro.Sydney@ALSGlobal.com +61-2-8784 8555 +61-2-8784 8500									
/ILLAWOOD 23-1551 Con Kariotoglou	Quote number :	1 of 3 ES2020ECONEV0001 (EN/222) NEPM 2013 B3 & ALS QC Standard									
: 11-Dec-2023 11:55 : 18-Dec-2023	Issue Date Scheduled Reporting Date	: 11-Dec-2023 • 18-Dec-2023									
: Client Drop Off : 1	Security Seal Temperature	: Not Available : 26.7'C, 26.2'C, 27.6'C - Ice present analysed : 10 / 9									
	 atlands 2117 afo@econenvironmental.com.au 'ILLAWOOD 3-1551 Con Kariotoglou : 11-Dec-2023 11:55 : 18-Dec-2023 : Client Drop Off 	Datlands 2117 Image: Construction of the security Seal Info@econenvironmental.com.au E-mail : Image: Construction of the security Seal Image: Construction of the security Seal : Image: Construction of the security Seal Image: Construction of the security Seal :									

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

as the determin tasks, that are incl If no sampling default 00:00 on is provided, the laboratory and component Matrix: SOIL Laboratory sample	SOIL - EA055-103 Moisture Content	SOIL - EA200F Asbestos Quantitation (FA+AF) in Soil by	SOIL - S-19 TRH/BTEXN/PAH/Ph/OC/OP/PCB/8 metals		
ES2342906-001	<i>time</i> 11-Dec-2023 00:00	BH1 0.2-0.3	<u>∞</u> ≥	√	√
ES2342906-002	11-Dec-2023 00:00	BH2 0.1-0.2	1	✓	✓
ES2342906-003	11-Dec-2023 00:00	BH3 0.1-0.2	✓	✓	✓
ES2342906-004	11-Dec-2023 00:00	BH4 0.1-0.2	✓	✓	✓
ES2342906-005	11-Dec-2023 00:00	BH5 0-0.1	✓	✓	✓
ES2342906-006	11-Dec-2023 00:00	BH6 0.1-0.2	✓	✓	✓
ES2342906-007	11-Dec-2023 00:00	BH7 0.2-0.3	✓	✓	✓
ES2342906-008	11-Dec-2023 00:00	BH8 0-0.1	✓	✓	✓
ES2342906-009	11-Dec-2023 00:00	D1	1	✓	✓
				1	

			σ
			(On Hold) WATER
Matrix: WATER			ld) W/
Laboratory sample ID	Sampling date / time	Sample ID	(On Hold) WATER No analysis reque:
ES2342906-010	11-Dec-2023 00:00 R1		✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

info econenvironmental

- *AU Certificate of Analysis NATA (COA)
 *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
 *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
 A4 AU Sample Receipt Notification Environmental HT (SRN)
 A4 AU Tax Invoice (INV)
 Chain of Custody (CoC) (COC)
- EDI Format ESDAT (ESDAT)
- EDI Format XTab (XTAB)

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology). (SOIL) EA200N: Asbestos Quantification (non-NATA) (SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

Email Email Email Email Email Email Email Email

info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2342906				
Client Contact Address	 ECON Environmental Pty Ltd info econenvironmental 1 St Aidans Avenue Oatlands 2117 	Contact: CustomerAddress: 277-289	ironmental Division Sydney tomer Services ES -289 Woodpark Road Smithfield N Australia 2164		
E-mail Telephone Facsimile	: info@econenvironmental.com.au : :	E-mail : ALSEnvir Telephone : +61-2-878 Facsimile : +61-2-878			
Project Order number C-O-C number Site Sampler	: VILLAWOOD : 23-1551 : : : Con Kariotoglou		CONEV0001 (EN/222) 13 B3 & ALS QC Standard		
Dates Date Samples Receiv Client Requested Due Date		Issue Date Scheduled Reporting Date	: 12-Dec-2023 • 18-Dec-2023		
Delivery Detail Mode of Delivery No. of coolers/boxes	/s : Client Drop Off : 1	Security Seal Temperature	: Not Available : 26.7'C, 26.2'C, 27.6'C - Ice present		
Receipt Detail	:	No. of samples received / analysed	: 10 / 10		

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Sample ID	Sample Container Received	Preferred Sample Container for Analysis			
Total Mercury by FIMS : EG035T					
R1	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered			
Total Metals by ICP-MS - Suite A : EG020A-T					
R1	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered			

SOIL - S-19 TRH/BTEXN/PAH/Ph/OC/OP/PCB/8 metals

✓
✓
✓
✓
✓
✓
✓
✓
✓

Summary of Sample(s) and Requested Analysis

 	process necessa tasks. Packages as the determina tasks, that are inclu tf no sampling default 00:00 on is provided, the	ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of samplin	g. If no sampling date Il be assumed by the ckets without a time	SOIL - EA055-103 Moisture Content	SOIL - EA200F Asbestos Quantitation (FA+AF) in Soil by
	ID	time		SOI Mois	SOI
	ES2342906-001	11-Dec-2023 00:00	BH1 0.2-0.3	✓	✓
	ES2342906-002	11-Dec-2023 00:00	BH2 0.1-0.2	✓	✓
	ES2342906-003	11-Dec-2023 00:00	BH3 0.1-0.2	✓	✓
	ES2342906-004	11-Dec-2023 00:00	BH4 0.1-0.2	 ✓ 	✓
	ES2342906-005	11-Dec-2023 00:00	BH5 0-0.1	✓	✓
	ES2342906-006	11-Dec-2023 00:00	BH6 0.1-0.2	✓	✓
	ES2342906-007	11-Dec-2023 00:00	BH7 0.2-0.3	1	✓
	ES2342906-008	11-Dec-2023 00:00	BH8 0-0.1	✓	✓
	ES2342906-009	11-Dec-2023 00:00	D1	✓	✓
	Matrix: WATER	Sampling date /	Sample ID	WATER - W-02T 8 metals (Total)	
1	ID	time		WA 8 mé	
	ES2342906-010	11-Dec-2023 00:00	R1	✓	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

info econenvironmental

- *AU Certificate of Analysis NATA (COA)
 *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
 *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
 A4 AU Sample Receipt Notification Environmental HT (SRN)
 A4 AU Tax Invoice (INV)
 Chain of Custody (CoC) (COC)
- EDI Format ESDAT (ESDAT)
- EDI Format XTab (XTAB)

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology). (SOIL) EA200N: Asbestos Quantification (non-NATA) (SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

Email Email Email Email Email Email Email Email

info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au info@econenvironmental.com.au

	Rolf	STATES ST	Laboratory: CIGLADST		poraze DA 50260 Př alsglobal.com Př alsglobal.com abane@alsglobal.com Drive Clinton QLD 4880	F DMUDGE	Westall Road Sp samples, melbou DMACKAY 78 He Ph. 07 4944 0177 E 27 Sydney Roa 2 6735 E. mudge	rne@alsglobal arbour Road Ma 'E-mackay@a ad Mudgee NSV	i com ackay QLD isglobal.cor W 2850	4740 m	Ph: 02 4968 943 GNOWRA 4/13 Gea Ph: 024423 2083 E GPERTH 10 Hos Way	5 Rose Gum Road Watebrook NSV 3 E: samples newcastle@alsglobal. ry Place North Nowrs NSW 2541 newra@alsglobal com Malege WA 9590 amples.perth@alsglobal.com	com Ph 02 UTOWN Ph 07 4 UWOLLO	DNEY 277-289 Woodgark Road Smithfield NSW 2164 2 8784 8555 E. semples, sydney@alaglobal.com VSVILLE 14-15 Desma Court Bohle QLD 4818 7780 0690 E: townewille environmental@elsglobal.com DMGOhl5 09 Kenny Street Weilongong NSW 2500 225 3125 E. portkemble@alkglobal.com
CLIENT:	ECON E	invironmental Pty Ltd			OUND REQUIREMENTS :		lard TAT (List	due date):			18.12.2023	FOR LABORA	FORY USE	ONLY (Circle)
		ans Avenue, Oatlands NSW	/ 2117	(Standard 1. Trace Organ		L Non S	Standard or ur	gent TAT (L	ist due d			Custody Seal Inta		Yes No N/A
PROJEC.					E	CONEV				COC SEQU	JENCE NUMBER (Ci	receipt/	e pricks pres	Yes No N/A
ORDER N										coc: 1 2	3 4 5		l'emperature :	on Receipt: *C
		ER: Con Kariotoglou		CT PH: 0452 65		-				OF: 1 2	3 4 5	6 7 Other comment		
		ariotoglou .S? (YES)		ER MOBILE: 04		RELINQUI			R	RECEIVED BY:	A	RELINQUISHED BY:		RECEIVED BY:
			addresses are listed): info@e	RMAT (or defai		DATE/TIMI				ASVVV DATE/TIME:	9	DATE/TIME:		DATE/TIME:
			addresses are listed): info@ed			023	L .			[[[]	1155	DATE/TIME.		DATERTIME.
		IAL HANDLING/STORAGI				020					have -			
COMMEN	I	TAL HANDLING/STORAGI	E OR DISPOSAL.							8				
ALS USE			APLE DETAILS SOLID (S) WATER (W)		CONTAINER INFO	ORMATION		ANAL Where N	YSIS REG Metals are	QUIRED including required, specify	g SUITES (NB. Suite C Total (unfiltered bottle required).	odes must be listed to attract su required) or Dissolved (field fil	iite price) tered bottle	Additional Information
LAB ID		SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below		TOTAL CONTAINERS	S-19	Asbestos EA200F (%w/w)	Heavy Metals (S2)				Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
1	BH1	0-2-0-3	11.12.2023	S			2	V	v					Steved
2	BH2	0.1-0.2	11.12.2023	S			2	۷	٧					
3	внз	0-1-0.2) 11.12.2023	s			2	٧	٧					
4	BH4	0-1-0-2) 11.12.2023	S	9		2	٧	۷					
5	BH5	0-0.1	11.12.2023	s			2	٧	V					
6	BH6	0-1-0-	2 11.12.2023	S			2	٧	٧					
7	BH7	0-2-0-1		s		6	2	٧	٧					
8	BH8	0-0.1	11.12.2023	S			2	٧	v			nental Division		V
9	D1		11.12.2023	S			2	٧	v		Sydney Work O	rder Reference		
(0	R1		11.12.2023	S			1			٧	ES	2342906		
Water Com V = VOA VI	tainer Code	95: P = Unpreserved Plastic; N erved; VB = VOA Vial Sodium B	↓= Nitric Preserved Plastic; ORC = isulphate Preserved; VS = VOA Vi	Nitric Preserved C al Sulfuric Preserved C	DRC; SH = Sodium Hydroxide/Cd Preser d; AV = Airfreight Unpreserved Vial SG =	TOTAL rved; S = Sodiur = Sulfuric Prese	m Hydroxide P	9 reserved Plass; H = H	9 stic; AG = CI preserv	1 Amber Glass Unit red Plastic: HS =	HC		F	= Formaldehyde Preserved Glass;
Z = Zinc Ac	etate Prese	rved Bottle; E = EDTA Preserve	d Bottles; ST = Sterile Bottle; ASS	= Plastic Bag for A	cid Sulphate Soils; B = Unpreserved Bag].					Telephone :	+ 61-2-8784 8555	<u></u>	